Metamath Proof Explorer


Theorem pzriprnglem6

Description: Lemma 6 for pzriprng : J has a ring unity. (Contributed by AV, 19-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
pzriprng.j J=R𝑠I
Assertion pzriprnglem6 XI10JX=XXJ10=X

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 pzriprng.j J=R𝑠I
4 1 2 pzriprnglem3 XIaX=a0
5 1 2 pzriprnglem5 Could not format I e. ( SubRng ` R ) : No typesetting found for |- I e. ( SubRng ` R ) with typecode |-
6 eqid R=R
7 3 6 ressmulr Could not format ( I e. ( SubRng ` R ) -> ( .r ` R ) = ( .r ` J ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> ( .r ` R ) = ( .r ` J ) ) with typecode |-
8 7 eqcomd Could not format ( I e. ( SubRng ` R ) -> ( .r ` J ) = ( .r ` R ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> ( .r ` J ) = ( .r ` R ) ) with typecode |-
9 5 8 ax-mp J=R
10 9 oveqi 10Ja0=10Ra0
11 10 a1i a10Ja0=10Ra0
12 zringbas =Basering
13 zringring ringRing
14 13 a1i aringRing
15 1zzd a1
16 0z 0
17 16 a1i a0
18 id aa
19 zringmulr ×=ring
20 19 oveqi 1a=1ringa
21 15 18 zmulcld a1a
22 20 21 eqeltrrid a1ringa
23 19 eqcomi ring=×
24 23 oveqi 0ring0=00
25 id 00
26 25 25 zmulcld 000
27 16 26 ax-mp 00
28 24 27 eqeltri 0ring0
29 28 a1i a0ring0
30 eqid ring=ring
31 1 12 12 14 14 15 17 18 17 22 29 30 30 6 xpsmul a10Ra0=1ringa0ring0
32 zcn aa
33 32 mullidd a1a=a
34 20 33 eqtr3id a1ringa=a
35 0cn 0
36 35 mul02i 00=0
37 24 36 eqtri 0ring0=0
38 37 a1i a0ring0=0
39 34 38 opeq12d a1ringa0ring0=a0
40 11 31 39 3eqtrd a10Ja0=a0
41 9 oveqi a0J10=a0R10
42 41 a1i aa0J10=a0R10
43 19 oveqi a1=aring1
44 18 15 zmulcld aa1
45 43 44 eqeltrrid aaring1
46 1 12 12 14 14 18 17 15 17 45 29 30 30 6 xpsmul aa0R10=aring10ring0
47 23 oveqi aring1=a1
48 32 mulridd aa1=a
49 47 48 eqtrid aaring1=a
50 49 38 opeq12d aaring10ring0=a0
51 42 46 50 3eqtrd aa0J10=a0
52 40 51 jca a10Ja0=a0a0J10=a0
53 oveq2 X=a010JX=10Ja0
54 id X=a0X=a0
55 53 54 eqeq12d X=a010JX=X10Ja0=a0
56 oveq1 X=a0XJ10=a0J10
57 56 54 eqeq12d X=a0XJ10=Xa0J10=a0
58 55 57 anbi12d X=a010JX=XXJ10=X10Ja0=a0a0J10=a0
59 52 58 syl5ibrcom aX=a010JX=XXJ10=X
60 59 rexlimiv aX=a010JX=XXJ10=X
61 4 60 sylbi XI10JX=XXJ10=X