Metamath Proof Explorer


Theorem pzriprnglem6

Description: Lemma 6 for pzriprng : J has a ring unity. (Contributed by AV, 19-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R = ring × 𝑠 ring
pzriprng.i I = × 0
pzriprng.j J = R 𝑠 I
Assertion pzriprnglem6 X I 1 0 J X = X X J 1 0 = X

Proof

Step Hyp Ref Expression
1 pzriprng.r R = ring × 𝑠 ring
2 pzriprng.i I = × 0
3 pzriprng.j J = R 𝑠 I
4 1 2 pzriprnglem3 X I a X = a 0
5 1 2 pzriprnglem5 I SubRng R
6 eqid R = R
7 3 6 ressmulr I SubRng R R = J
8 7 eqcomd I SubRng R J = R
9 5 8 ax-mp J = R
10 9 oveqi 1 0 J a 0 = 1 0 R a 0
11 10 a1i a 1 0 J a 0 = 1 0 R a 0
12 zringbas = Base ring
13 zringring ring Ring
14 13 a1i a ring Ring
15 1zzd a 1
16 0z 0
17 16 a1i a 0
18 id a a
19 zringmulr × = ring
20 19 oveqi 1 a = 1 ring a
21 15 18 zmulcld a 1 a
22 20 21 eqeltrrid a 1 ring a
23 19 eqcomi ring = ×
24 23 oveqi 0 ring 0 = 0 0
25 id 0 0
26 25 25 zmulcld 0 0 0
27 16 26 ax-mp 0 0
28 24 27 eqeltri 0 ring 0
29 28 a1i a 0 ring 0
30 eqid ring = ring
31 1 12 12 14 14 15 17 18 17 22 29 30 30 6 xpsmul a 1 0 R a 0 = 1 ring a 0 ring 0
32 zcn a a
33 32 mullidd a 1 a = a
34 20 33 eqtr3id a 1 ring a = a
35 0cn 0
36 35 mul02i 0 0 = 0
37 24 36 eqtri 0 ring 0 = 0
38 37 a1i a 0 ring 0 = 0
39 34 38 opeq12d a 1 ring a 0 ring 0 = a 0
40 11 31 39 3eqtrd a 1 0 J a 0 = a 0
41 9 oveqi a 0 J 1 0 = a 0 R 1 0
42 41 a1i a a 0 J 1 0 = a 0 R 1 0
43 19 oveqi a 1 = a ring 1
44 18 15 zmulcld a a 1
45 43 44 eqeltrrid a a ring 1
46 1 12 12 14 14 18 17 15 17 45 29 30 30 6 xpsmul a a 0 R 1 0 = a ring 1 0 ring 0
47 23 oveqi a ring 1 = a 1
48 32 mulridd a a 1 = a
49 47 48 eqtrid a a ring 1 = a
50 49 38 opeq12d a a ring 1 0 ring 0 = a 0
51 42 46 50 3eqtrd a a 0 J 1 0 = a 0
52 40 51 jca a 1 0 J a 0 = a 0 a 0 J 1 0 = a 0
53 oveq2 X = a 0 1 0 J X = 1 0 J a 0
54 id X = a 0 X = a 0
55 53 54 eqeq12d X = a 0 1 0 J X = X 1 0 J a 0 = a 0
56 oveq1 X = a 0 X J 1 0 = a 0 J 1 0
57 56 54 eqeq12d X = a 0 X J 1 0 = X a 0 J 1 0 = a 0
58 55 57 anbi12d X = a 0 1 0 J X = X X J 1 0 = X 1 0 J a 0 = a 0 a 0 J 1 0 = a 0
59 52 58 syl5ibrcom a X = a 0 1 0 J X = X X J 1 0 = X
60 59 rexlimiv a X = a 0 1 0 J X = X X J 1 0 = X
61 4 60 sylbi X I 1 0 J X = X X J 1 0 = X