Metamath Proof Explorer


Theorem pzriprnglem9

Description: Lemma 9 for pzriprng : The ring unity of the ring J . (Contributed by AV, 22-Mar-2025)

Ref Expression
Hypotheses pzriprng.r R=ring×𝑠ring
pzriprng.i I=×0
pzriprng.j J=R𝑠I
pzriprng.1 1˙=1J
Assertion pzriprnglem9 1˙=10

Proof

Step Hyp Ref Expression
1 pzriprng.r R=ring×𝑠ring
2 pzriprng.i I=×0
3 pzriprng.j J=R𝑠I
4 pzriprng.1 1˙=1J
5 1z 1
6 c0ex 0V
7 6 snid 00
8 2 eleq2i 10I10×0
9 opelxp 10×0100
10 8 9 bitri 10I100
11 5 7 10 mpbir2an 10I
12 1 2 3 pzriprnglem6 xI10Jx=xxJ10=x
13 12 rgen xI10Jx=xxJ10=x
14 11 13 pm3.2i 10IxI10Jx=xxJ10=x
15 1 2 3 pzriprnglem7 JRing
16 1 2 pzriprnglem5 Could not format I e. ( SubRng ` R ) : No typesetting found for |- I e. ( SubRng ` R ) with typecode |-
17 3 subrngbas Could not format ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) with typecode |-
18 16 17 ax-mp I=BaseJ
19 eqid J=J
20 18 19 4 isringid JRing10IxI10Jx=xxJ10=x1˙=10
21 15 20 ax-mp 10IxI10Jx=xxJ10=x1˙=10
22 14 21 mpbi 1˙=10