Description: Lemma 9 for pzriprng : The ring unity of the ring J . (Contributed by AV, 22-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pzriprng.r | |
|
pzriprng.i | |
||
pzriprng.j | |
||
pzriprng.1 | |
||
Assertion | pzriprnglem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pzriprng.r | |
|
2 | pzriprng.i | |
|
3 | pzriprng.j | |
|
4 | pzriprng.1 | |
|
5 | 1z | |
|
6 | c0ex | |
|
7 | 6 | snid | |
8 | 2 | eleq2i | |
9 | opelxp | |
|
10 | 8 9 | bitri | |
11 | 5 7 10 | mpbir2an | |
12 | 1 2 3 | pzriprnglem6 | |
13 | 12 | rgen | |
14 | 11 13 | pm3.2i | |
15 | 1 2 3 | pzriprnglem7 | |
16 | 1 2 | pzriprnglem5 | Could not format I e. ( SubRng ` R ) : No typesetting found for |- I e. ( SubRng ` R ) with typecode |- |
17 | 3 | subrngbas | Could not format ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> I = ( Base ` J ) ) with typecode |- |
18 | 16 17 | ax-mp | |
19 | eqid | |
|
20 | 18 19 4 | isringid | |
21 | 15 20 | ax-mp | |
22 | 14 21 | mpbi | |