Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | qexpz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |
|
2 | simpll2 | |
|
3 | 2 | nncnd | |
4 | 3 | mul01d | |
5 | simpr | |
|
6 | simpll3 | |
|
7 | simpll1 | |
|
8 | qcn | |
|
9 | 7 8 | syl | |
10 | simplr | |
|
11 | 2 | nnzd | |
12 | 9 10 11 | expne0d | |
13 | pczcl | |
|
14 | 5 6 12 13 | syl12anc | |
15 | 14 | nn0ge0d | |
16 | pcexp | |
|
17 | 5 7 10 11 16 | syl121anc | |
18 | 15 17 | breqtrd | |
19 | 4 18 | eqbrtrd | |
20 | 0red | |
|
21 | pcqcl | |
|
22 | 5 7 10 21 | syl12anc | |
23 | 22 | zred | |
24 | 2 | nnred | |
25 | 2 | nngt0d | |
26 | lemul2 | |
|
27 | 20 23 24 25 26 | syl112anc | |
28 | 19 27 | mpbird | |
29 | 28 | ralrimiva | |
30 | simpl1 | |
|
31 | pcz | |
|
32 | 30 31 | syl | |
33 | 29 32 | mpbird | |
34 | 0zd | |
|
35 | 1 33 34 | pm2.61ne | |