Metamath Proof Explorer


Theorem qexpz

Description: If a power of a rational number is an integer, then the number is an integer. In other words, all n-th roots are irrational unless they are integers (so that the original number is an n-th power). (Contributed by Mario Carneiro, 10-Aug-2015)

Ref Expression
Assertion qexpz ANANA

Proof

Step Hyp Ref Expression
1 eleq1 A=0A0
2 simpll2 ANANA0pN
3 2 nncnd ANANA0pN
4 3 mul01d ANANA0p N0=0
5 simpr ANANA0pp
6 simpll3 ANANA0pAN
7 simpll1 ANANA0pA
8 qcn AA
9 7 8 syl ANANA0pA
10 simplr ANANA0pA0
11 2 nnzd ANANA0pN
12 9 10 11 expne0d ANANA0pAN0
13 pczcl pANAN0ppCntAN0
14 5 6 12 13 syl12anc ANANA0pppCntAN0
15 14 nn0ge0d ANANA0p0ppCntAN
16 pcexp pAA0NppCntAN=NppCntA
17 5 7 10 11 16 syl121anc ANANA0pppCntAN=NppCntA
18 15 17 breqtrd ANANA0p0NppCntA
19 4 18 eqbrtrd ANANA0p N0NppCntA
20 0red ANANA0p0
21 pcqcl pAA0ppCntA
22 5 7 10 21 syl12anc ANANA0pppCntA
23 22 zred ANANA0pppCntA
24 2 nnred ANANA0pN
25 2 nngt0d ANANA0p0<N
26 lemul2 0ppCntAN0<N0ppCntA N0NppCntA
27 20 23 24 25 26 syl112anc ANANA0p0ppCntA N0NppCntA
28 19 27 mpbird ANANA0p0ppCntA
29 28 ralrimiva ANANA0p0ppCntA
30 simpl1 ANANA0A
31 pcz AAp0ppCntA
32 30 31 syl ANANA0Ap0ppCntA
33 29 32 mpbird ANANA0A
34 0zd ANAN0
35 1 33 34 pm2.61ne ANANA