Step |
Hyp |
Ref |
Expression |
1 |
|
qndenserrnopnlem.i |
|
2 |
|
qndenserrnopnlem.j |
|
3 |
|
qndenserrnopnlem.v |
|
4 |
|
qndenserrnopnlem.x |
|
5 |
|
qndenserrnopnlem.d |
|
6 |
5
|
rrxmetfi |
|
7 |
1 6
|
syl |
|
8 |
|
metxmet |
|
9 |
7 8
|
syl |
|
10 |
3 2
|
eleqtrdi |
|
11 |
1
|
rrxtopnfi |
|
12 |
5
|
a1i |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
rrxdsfi |
|
16 |
1 15
|
syl |
|
17 |
12 16
|
eqtr2d |
|
18 |
17
|
fveq2d |
|
19 |
11 18
|
eqtrd |
|
20 |
10 19
|
eleqtrd |
|
21 |
|
eqid |
|
22 |
21
|
mopni2 |
|
23 |
9 20 4 22
|
syl3anc |
|
24 |
1
|
3ad2ant1 |
|
25 |
|
rrxtps |
|
26 |
1 25
|
syl |
|
27 |
|
eqid |
|
28 |
27 2
|
istps |
|
29 |
26 28
|
sylib |
|
30 |
1 13 27
|
rrxbasefi |
|
31 |
30
|
fveq2d |
|
32 |
29 31
|
eleqtrd |
|
33 |
|
toponss |
|
34 |
32 3 33
|
syl2anc |
|
35 |
34 4
|
sseldd |
|
36 |
35
|
3ad2ant1 |
|
37 |
|
simp2 |
|
38 |
24 36 5 37
|
qndenserrnbl |
|
39 |
|
ssel |
|
40 |
39
|
adantr |
|
41 |
40
|
3ad2antl3 |
|
42 |
41
|
reximdva |
|
43 |
38 42
|
mpd |
|
44 |
43
|
3exp |
|
45 |
44
|
rexlimdv |
|
46 |
23 45
|
mpd |
|