Metamath Proof Explorer


Theorem qqhnm

Description: The norm of the image by QQHom of a rational number in a topological division ring. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses qqhnm.n N = norm R
qqhnm.z Z = ℤMod R
Assertion qqhnm R NrmRing DivRing Z NrmMod chr R = 0 Q N ℚHom R Q = Q

Proof

Step Hyp Ref Expression
1 qqhnm.n N = norm R
2 qqhnm.z Z = ℤMod R
3 simpr R NrmRing DivRing Z NrmMod chr R = 0 Q Q
4 qeqnumdivden Q Q = numer Q denom Q
5 4 fveq2d Q Q = numer Q denom Q
6 3 5 syl R NrmRing DivRing Z NrmMod chr R = 0 Q Q = numer Q denom Q
7 qnumcl Q numer Q
8 3 7 syl R NrmRing DivRing Z NrmMod chr R = 0 Q numer Q
9 8 zcnd R NrmRing DivRing Z NrmMod chr R = 0 Q numer Q
10 qdencl Q denom Q
11 3 10 syl R NrmRing DivRing Z NrmMod chr R = 0 Q denom Q
12 11 nncnd R NrmRing DivRing Z NrmMod chr R = 0 Q denom Q
13 nnne0 denom Q denom Q 0
14 3 10 13 3syl R NrmRing DivRing Z NrmMod chr R = 0 Q denom Q 0
15 9 12 14 absdivd R NrmRing DivRing Z NrmMod chr R = 0 Q numer Q denom Q = numer Q denom Q
16 inss2 NrmRing DivRing DivRing
17 simpl1 R NrmRing DivRing Z NrmMod chr R = 0 Q R NrmRing DivRing
18 16 17 sseldi R NrmRing DivRing Z NrmMod chr R = 0 Q R DivRing
19 simpl3 R NrmRing DivRing Z NrmMod chr R = 0 Q chr R = 0
20 eqid Base R = Base R
21 eqid / r R = / r R
22 eqid ℤRHom R = ℤRHom R
23 20 21 22 qqhvval R DivRing chr R = 0 Q ℚHom R Q = ℤRHom R numer Q / r R ℤRHom R denom Q
24 23 fveq2d R DivRing chr R = 0 Q N ℚHom R Q = N ℤRHom R numer Q / r R ℤRHom R denom Q
25 18 19 3 24 syl21anc R NrmRing DivRing Z NrmMod chr R = 0 Q N ℚHom R Q = N ℤRHom R numer Q / r R ℤRHom R denom Q
26 inss1 NrmRing DivRing NrmRing
27 26 17 sseldi R NrmRing DivRing Z NrmMod chr R = 0 Q R NrmRing
28 drngnzr R DivRing R NzRing
29 18 28 syl R NrmRing DivRing Z NrmMod chr R = 0 Q R NzRing
30 drngring R DivRing R Ring
31 22 zrhrhm R Ring ℤRHom R ring RingHom R
32 zringbas = Base ring
33 32 20 rhmf ℤRHom R ring RingHom R ℤRHom R : Base R
34 18 30 31 33 4syl R NrmRing DivRing Z NrmMod chr R = 0 Q ℤRHom R : Base R
35 34 8 ffvelrnd R NrmRing DivRing Z NrmMod chr R = 0 Q ℤRHom R numer Q Base R
36 11 nnzd R NrmRing DivRing Z NrmMod chr R = 0 Q denom Q
37 eqid 0 R = 0 R
38 20 22 37 elzrhunit R DivRing chr R = 0 denom Q denom Q 0 ℤRHom R denom Q Unit R
39 18 19 36 14 38 syl22anc R NrmRing DivRing Z NrmMod chr R = 0 Q ℤRHom R denom Q Unit R
40 eqid Unit R = Unit R
41 20 1 40 21 nmdvr R NrmRing R NzRing ℤRHom R numer Q Base R ℤRHom R denom Q Unit R N ℤRHom R numer Q / r R ℤRHom R denom Q = N ℤRHom R numer Q N ℤRHom R denom Q
42 27 29 35 39 41 syl22anc R NrmRing DivRing Z NrmMod chr R = 0 Q N ℤRHom R numer Q / r R ℤRHom R denom Q = N ℤRHom R numer Q N ℤRHom R denom Q
43 simpl2 R NrmRing DivRing Z NrmMod chr R = 0 Q Z NrmMod
44 2 zhmnrg R NrmRing Z NrmRing
45 27 44 syl R NrmRing DivRing Z NrmMod chr R = 0 Q Z NrmRing
46 20 1 2 22 zrhnm Z NrmMod Z NrmRing R NzRing numer Q N ℤRHom R numer Q = numer Q
47 43 45 29 8 46 syl31anc R NrmRing DivRing Z NrmMod chr R = 0 Q N ℤRHom R numer Q = numer Q
48 20 1 2 22 zrhnm Z NrmMod Z NrmRing R NzRing denom Q N ℤRHom R denom Q = denom Q
49 43 45 29 36 48 syl31anc R NrmRing DivRing Z NrmMod chr R = 0 Q N ℤRHom R denom Q = denom Q
50 47 49 oveq12d R NrmRing DivRing Z NrmMod chr R = 0 Q N ℤRHom R numer Q N ℤRHom R denom Q = numer Q denom Q
51 25 42 50 3eqtrrd R NrmRing DivRing Z NrmMod chr R = 0 Q numer Q denom Q = N ℚHom R Q
52 6 15 51 3eqtrrd R NrmRing DivRing Z NrmMod chr R = 0 Q N ℚHom R Q = Q