Metamath Proof Explorer


Theorem qusima

Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses qusima.b B = Base G
qusima.q Q = G / 𝑠 G ~ QG N
qusima.p ˙ = LSSum G
qusima.e E = h S ran x h x ˙ N
qusima.f F = x B x G ~ QG N
qusima.n φ N NrmSGrp G
qusima.h φ H S
qusima.s φ S SubGrp G
Assertion qusima φ E H = F H

Proof

Step Hyp Ref Expression
1 qusima.b B = Base G
2 qusima.q Q = G / 𝑠 G ~ QG N
3 qusima.p ˙ = LSSum G
4 qusima.e E = h S ran x h x ˙ N
5 qusima.f F = x B x G ~ QG N
6 qusima.n φ N NrmSGrp G
7 qusima.h φ H S
8 qusima.s φ S SubGrp G
9 5 reseq1i F H = x B x G ~ QG N H
10 8 7 sseldd φ H SubGrp G
11 1 subgss H SubGrp G H B
12 10 11 syl φ H B
13 12 resmptd φ x B x G ~ QG N H = x H x G ~ QG N
14 nsgsubg N NrmSGrp G N SubGrp G
15 6 14 syl φ N SubGrp G
16 15 adantr φ x H N SubGrp G
17 12 sselda φ x H x B
18 1 3 16 17 quslsm φ x H x G ~ QG N = x ˙ N
19 18 mpteq2dva φ x H x G ~ QG N = x H x ˙ N
20 13 19 eqtrd φ x B x G ~ QG N H = x H x ˙ N
21 9 20 syl5req φ x H x ˙ N = F H
22 21 adantr φ h = H x H x ˙ N = F H
23 22 rneqd φ h = H ran x H x ˙ N = ran F H
24 mpteq1 h = H x h x ˙ N = x H x ˙ N
25 24 rneqd h = H ran x h x ˙ N = ran x H x ˙ N
26 25 adantl φ h = H ran x h x ˙ N = ran x H x ˙ N
27 df-ima F H = ran F H
28 27 a1i φ h = H F H = ran F H
29 23 26 28 3eqtr4d φ h = H ran x h x ˙ N = F H
30 1 fvexi B V
31 30 mptex x B x G ~ QG N V
32 5 31 eqeltri F V
33 imaexg F V F H V
34 32 33 mp1i φ F H V
35 4 29 7 34 fvmptd2 φ E H = F H