Metamath Proof Explorer


Theorem qusima

Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses qusima.b B=BaseG
qusima.q Q=G/𝑠G~QGN
qusima.p ˙=LSSumG
qusima.e E=hSranxhx˙N
qusima.f F=xBxG~QGN
qusima.n φNNrmSGrpG
qusima.h φHS
qusima.s φSSubGrpG
Assertion qusima φEH=FH

Proof

Step Hyp Ref Expression
1 qusima.b B=BaseG
2 qusima.q Q=G/𝑠G~QGN
3 qusima.p ˙=LSSumG
4 qusima.e E=hSranxhx˙N
5 qusima.f F=xBxG~QGN
6 qusima.n φNNrmSGrpG
7 qusima.h φHS
8 qusima.s φSSubGrpG
9 5 reseq1i FH=xBxG~QGNH
10 8 7 sseldd φHSubGrpG
11 1 subgss HSubGrpGHB
12 10 11 syl φHB
13 12 resmptd φxBxG~QGNH=xHxG~QGN
14 nsgsubg NNrmSGrpGNSubGrpG
15 6 14 syl φNSubGrpG
16 15 adantr φxHNSubGrpG
17 12 sselda φxHxB
18 1 3 16 17 quslsm φxHxG~QGN=x˙N
19 18 mpteq2dva φxHxG~QGN=xHx˙N
20 13 19 eqtrd φxBxG~QGNH=xHx˙N
21 9 20 eqtr2id φxHx˙N=FH
22 21 adantr φh=HxHx˙N=FH
23 22 rneqd φh=HranxHx˙N=ranFH
24 mpteq1 h=Hxhx˙N=xHx˙N
25 24 rneqd h=Hranxhx˙N=ranxHx˙N
26 25 adantl φh=Hranxhx˙N=ranxHx˙N
27 df-ima FH=ranFH
28 27 a1i φh=HFH=ranFH
29 23 26 28 3eqtr4d φh=Hranxhx˙N=FH
30 1 fvexi BV
31 30 mptex xBxG~QGNV
32 5 31 eqeltri FV
33 imaexg FVFHV
34 32 33 mp1i φFHV
35 4 29 7 34 fvmptd2 φEH=FH