Description: The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusima.b | |
|
qusima.q | |
||
qusima.p | |
||
qusima.e | |
||
qusima.f | |
||
qusima.n | |
||
qusima.h | |
||
qusima.s | |
||
Assertion | qusima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusima.b | |
|
2 | qusima.q | |
|
3 | qusima.p | |
|
4 | qusima.e | |
|
5 | qusima.f | |
|
6 | qusima.n | |
|
7 | qusima.h | |
|
8 | qusima.s | |
|
9 | 5 | reseq1i | |
10 | 8 7 | sseldd | |
11 | 1 | subgss | |
12 | 10 11 | syl | |
13 | 12 | resmptd | |
14 | nsgsubg | |
|
15 | 6 14 | syl | |
16 | 15 | adantr | |
17 | 12 | sselda | |
18 | 1 3 16 17 | quslsm | |
19 | 18 | mpteq2dva | |
20 | 13 19 | eqtrd | |
21 | 9 20 | eqtr2id | |
22 | 21 | adantr | |
23 | 22 | rneqd | |
24 | mpteq1 | |
|
25 | 24 | rneqd | |
26 | 25 | adantl | |
27 | df-ima | |
|
28 | 27 | a1i | |
29 | 23 26 28 | 3eqtr4d | |
30 | 1 | fvexi | |
31 | 30 | mptex | |
32 | 5 31 | eqeltri | |
33 | imaexg | |
|
34 | 32 33 | mp1i | |
35 | 4 29 7 34 | fvmptd2 | |