Metamath Proof Explorer


Theorem r0cld

Description: The analogue of the T_1 axiom (singletons are closed) for an R_0 space. In an R_0 space the set of all points topologically indistinguishable from A is closed. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis kqval.2 F=xXyJ|xy
Assertion r0cld JTopOnXKQJFreAXzX|oJzoAoClsdJ

Proof

Step Hyp Ref Expression
1 kqval.2 F=xXyJ|xy
2 1 kqffn JTopOnXFFnX
3 2 3ad2ant1 JTopOnXKQJFreAXFFnX
4 fncnvima2 FFnXF-1FA=zX|FzFA
5 3 4 syl JTopOnXKQJFreAXF-1FA=zX|FzFA
6 fvex FzV
7 6 elsn FzFAFz=FA
8 simpl1 JTopOnXKQJFreAXzXJTopOnX
9 simpr JTopOnXKQJFreAXzXzX
10 simpl3 JTopOnXKQJFreAXzXAX
11 1 kqfeq JTopOnXzXAXFz=FAyJzyAy
12 eleq2w y=ozyzo
13 eleq2w y=oAyAo
14 12 13 bibi12d y=ozyAyzoAo
15 14 cbvralvw yJzyAyoJzoAo
16 11 15 bitrdi JTopOnXzXAXFz=FAoJzoAo
17 8 9 10 16 syl3anc JTopOnXKQJFreAXzXFz=FAoJzoAo
18 7 17 bitrid JTopOnXKQJFreAXzXFzFAoJzoAo
19 18 rabbidva JTopOnXKQJFreAXzX|FzFA=zX|oJzoAo
20 5 19 eqtrd JTopOnXKQJFreAXF-1FA=zX|oJzoAo
21 1 kqid JTopOnXFJCnKQJ
22 21 3ad2ant1 JTopOnXKQJFreAXFJCnKQJ
23 simp2 JTopOnXKQJFreAXKQJFre
24 simp3 JTopOnXKQJFreAXAX
25 fnfvelrn FFnXAXFAranF
26 3 24 25 syl2anc JTopOnXKQJFreAXFAranF
27 1 kqtopon JTopOnXKQJTopOnranF
28 27 3ad2ant1 JTopOnXKQJFreAXKQJTopOnranF
29 toponuni KQJTopOnranFranF=KQJ
30 28 29 syl JTopOnXKQJFreAXranF=KQJ
31 26 30 eleqtrd JTopOnXKQJFreAXFAKQJ
32 eqid KQJ=KQJ
33 32 t1sncld KQJFreFAKQJFAClsdKQJ
34 23 31 33 syl2anc JTopOnXKQJFreAXFAClsdKQJ
35 cnclima FJCnKQJFAClsdKQJF-1FAClsdJ
36 22 34 35 syl2anc JTopOnXKQJFreAXF-1FAClsdJ
37 20 36 eqeltrrd JTopOnXKQJFreAXzX|oJzoAoClsdJ