Metamath Proof Explorer


Theorem r1ordg

Description: Ordering relation for the cumulative hierarchy of sets. Part of Proposition 9.10(2) of TakeutiZaring p. 77. (Contributed by NM, 8-Sep-2003)

Ref Expression
Assertion r1ordg BdomR1ABR1AR1B

Proof

Step Hyp Ref Expression
1 simpl BdomR1ABBdomR1
2 r1funlim FunR1LimdomR1
3 2 simpri LimdomR1
4 limord LimdomR1OrddomR1
5 3 4 ax-mp OrddomR1
6 ordsson OrddomR1domR1On
7 5 6 ax-mp domR1On
8 7 sseli BdomR1BOn
9 1 8 syl BdomR1ABBOn
10 onelon BOnABAOn
11 8 10 sylan BdomR1ABAOn
12 onsuc AOnsucAOn
13 11 12 syl BdomR1ABsucAOn
14 eloni BOnOrdB
15 ordsucss OrdBABsucAB
16 14 15 syl BOnABsucAB
17 16 imp BOnABsucAB
18 8 17 sylan BdomR1ABsucAB
19 eleq1 x=sucAxdomR1sucAdomR1
20 fveq2 x=sucAR1x=R1sucA
21 20 eleq2d x=sucAR1AR1xR1AR1sucA
22 19 21 imbi12d x=sucAxdomR1R1AR1xsucAdomR1R1AR1sucA
23 eleq1 x=yxdomR1ydomR1
24 fveq2 x=yR1x=R1y
25 24 eleq2d x=yR1AR1xR1AR1y
26 23 25 imbi12d x=yxdomR1R1AR1xydomR1R1AR1y
27 eleq1 x=sucyxdomR1sucydomR1
28 fveq2 x=sucyR1x=R1sucy
29 28 eleq2d x=sucyR1AR1xR1AR1sucy
30 27 29 imbi12d x=sucyxdomR1R1AR1xsucydomR1R1AR1sucy
31 eleq1 x=BxdomR1BdomR1
32 fveq2 x=BR1x=R1B
33 32 eleq2d x=BR1AR1xR1AR1B
34 31 33 imbi12d x=BxdomR1R1AR1xBdomR1R1AR1B
35 fvex R1AV
36 35 pwid R1A𝒫R1A
37 limsuc LimdomR1AdomR1sucAdomR1
38 3 37 ax-mp AdomR1sucAdomR1
39 r1sucg AdomR1R1sucA=𝒫R1A
40 38 39 sylbir sucAdomR1R1sucA=𝒫R1A
41 36 40 eleqtrrid sucAdomR1R1AR1sucA
42 41 a1i sucAOnsucAdomR1R1AR1sucA
43 limsuc LimdomR1ydomR1sucydomR1
44 3 43 ax-mp ydomR1sucydomR1
45 r1tr TrR1y
46 dftr4 TrR1yR1y𝒫R1y
47 45 46 mpbi R1y𝒫R1y
48 r1sucg ydomR1R1sucy=𝒫R1y
49 47 48 sseqtrrid ydomR1R1yR1sucy
50 49 sseld ydomR1R1AR1yR1AR1sucy
51 50 a2i ydomR1R1AR1yydomR1R1AR1sucy
52 44 51 biimtrrid ydomR1R1AR1ysucydomR1R1AR1sucy
53 52 a1i yOnsucAOnsucAyydomR1R1AR1ysucydomR1R1AR1sucy
54 simprl LimxsucAOnsucAxxdomR1sucAx
55 simplr LimxsucAOnsucAxxdomR1sucAOn
56 onsucb AOnsucAOn
57 55 56 sylibr LimxsucAOnsucAxxdomR1AOn
58 limord LimxOrdx
59 58 ad2antrr LimxsucAOnsucAxxdomR1Ordx
60 ordelsuc AOnOrdxAxsucAx
61 57 59 60 syl2anc LimxsucAOnsucAxxdomR1AxsucAx
62 54 61 mpbird LimxsucAOnsucAxxdomR1Ax
63 limsuc LimxAxsucAx
64 63 ad2antrr LimxsucAOnsucAxxdomR1AxsucAx
65 62 64 mpbid LimxsucAOnsucAxxdomR1sucAx
66 simprr LimxsucAOnsucAxxdomR1xdomR1
67 ordtr1 OrddomR1AxxdomR1AdomR1
68 5 67 ax-mp AxxdomR1AdomR1
69 62 66 68 syl2anc LimxsucAOnsucAxxdomR1AdomR1
70 69 39 syl LimxsucAOnsucAxxdomR1R1sucA=𝒫R1A
71 36 70 eleqtrrid LimxsucAOnsucAxxdomR1R1AR1sucA
72 fveq2 y=sucAR1y=R1sucA
73 72 eleq2d y=sucAR1AR1yR1AR1sucA
74 73 rspcev sucAxR1AR1sucAyxR1AR1y
75 65 71 74 syl2anc LimxsucAOnsucAxxdomR1yxR1AR1y
76 eliun R1AyxR1yyxR1AR1y
77 75 76 sylibr LimxsucAOnsucAxxdomR1R1AyxR1y
78 simpll LimxsucAOnsucAxxdomR1Limx
79 r1limg xdomR1LimxR1x=yxR1y
80 66 78 79 syl2anc LimxsucAOnsucAxxdomR1R1x=yxR1y
81 77 80 eleqtrrd LimxsucAOnsucAxxdomR1R1AR1x
82 81 expr LimxsucAOnsucAxxdomR1R1AR1x
83 82 a1d LimxsucAOnsucAxyxsucAyydomR1R1AR1yxdomR1R1AR1x
84 22 26 30 34 42 53 83 tfindsg BOnsucAOnsucABBdomR1R1AR1B
85 84 impr BOnsucAOnsucABBdomR1R1AR1B
86 9 13 18 1 85 syl22anc BdomR1ABR1AR1B
87 86 ex BdomR1ABR1AR1B