Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | r1wunlim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | 1 | wun0 | |
3 | elfvdm | |
|
4 | 2 3 | syl | |
5 | r1fnon | |
|
6 | 5 | fndmi | |
7 | 4 6 | eleqtrdi | |
8 | eloni | |
|
9 | 7 8 | syl | |
10 | n0i | |
|
11 | 2 10 | syl | |
12 | fveq2 | |
|
13 | r10 | |
|
14 | 12 13 | eqtrdi | |
15 | 11 14 | nsyl | |
16 | onsuc | |
|
17 | 7 16 | syl | |
18 | sucidg | |
|
19 | 7 18 | syl | |
20 | r1ord | |
|
21 | 17 19 20 | sylc | |
22 | r1elwf | |
|
23 | wfelirr | |
|
24 | 21 22 23 | 3syl | |
25 | simprr | |
|
26 | 25 | fveq2d | |
27 | r1suc | |
|
28 | 27 | ad2antrl | |
29 | 26 28 | eqtrd | |
30 | simplr | |
|
31 | 7 | adantr | |
32 | sucidg | |
|
33 | 32 | ad2antrl | |
34 | 33 25 | eleqtrrd | |
35 | r1ord | |
|
36 | 31 34 35 | sylc | |
37 | 30 36 | wunpw | |
38 | 29 37 | eqeltrd | |
39 | 38 | rexlimdvaa | |
40 | 24 39 | mtod | |
41 | ioran | |
|
42 | 15 40 41 | sylanbrc | |
43 | dflim3 | |
|
44 | 9 42 43 | sylanbrc | |
45 | r1limwun | |
|
46 | 44 45 | impbida | |