Metamath Proof Explorer


Theorem r1wunlim

Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion r1wunlim AVR1AWUniLimA

Proof

Step Hyp Ref Expression
1 simpr AVR1AWUniR1AWUni
2 1 wun0 AVR1AWUniR1A
3 elfvdm R1AAdomR1
4 2 3 syl AVR1AWUniAdomR1
5 r1fnon R1FnOn
6 5 fndmi domR1=On
7 4 6 eleqtrdi AVR1AWUniAOn
8 eloni AOnOrdA
9 7 8 syl AVR1AWUniOrdA
10 n0i R1A¬R1A=
11 2 10 syl AVR1AWUni¬R1A=
12 fveq2 A=R1A=R1
13 r10 R1=
14 12 13 eqtrdi A=R1A=
15 11 14 nsyl AVR1AWUni¬A=
16 onsuc AOnsucAOn
17 7 16 syl AVR1AWUnisucAOn
18 sucidg AOnAsucA
19 7 18 syl AVR1AWUniAsucA
20 r1ord sucAOnAsucAR1AR1sucA
21 17 19 20 sylc AVR1AWUniR1AR1sucA
22 r1elwf R1AR1sucAR1AR1On
23 wfelirr R1AR1On¬R1AR1A
24 21 22 23 3syl AVR1AWUni¬R1AR1A
25 simprr AVR1AWUnixOnA=sucxA=sucx
26 25 fveq2d AVR1AWUnixOnA=sucxR1A=R1sucx
27 r1suc xOnR1sucx=𝒫R1x
28 27 ad2antrl AVR1AWUnixOnA=sucxR1sucx=𝒫R1x
29 26 28 eqtrd AVR1AWUnixOnA=sucxR1A=𝒫R1x
30 simplr AVR1AWUnixOnA=sucxR1AWUni
31 7 adantr AVR1AWUnixOnA=sucxAOn
32 sucidg xOnxsucx
33 32 ad2antrl AVR1AWUnixOnA=sucxxsucx
34 33 25 eleqtrrd AVR1AWUnixOnA=sucxxA
35 r1ord AOnxAR1xR1A
36 31 34 35 sylc AVR1AWUnixOnA=sucxR1xR1A
37 30 36 wunpw AVR1AWUnixOnA=sucx𝒫R1xR1A
38 29 37 eqeltrd AVR1AWUnixOnA=sucxR1AR1A
39 38 rexlimdvaa AVR1AWUnixOnA=sucxR1AR1A
40 24 39 mtod AVR1AWUni¬xOnA=sucx
41 ioran ¬A=xOnA=sucx¬A=¬xOnA=sucx
42 15 40 41 sylanbrc AVR1AWUni¬A=xOnA=sucx
43 dflim3 LimAOrdA¬A=xOnA=sucx
44 9 42 43 sylanbrc AVR1AWUniLimA
45 r1limwun AVLimAR1AWUni
46 44 45 impbida AVR1AWUniLimA