Metamath Proof Explorer


Theorem r1wunlim

Description: The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion r1wunlim A V R1 A WUni Lim A

Proof

Step Hyp Ref Expression
1 simpr A V R1 A WUni R1 A WUni
2 1 wun0 A V R1 A WUni R1 A
3 elfvdm R1 A A dom R1
4 2 3 syl A V R1 A WUni A dom R1
5 r1fnon R1 Fn On
6 fndm R1 Fn On dom R1 = On
7 5 6 ax-mp dom R1 = On
8 4 7 eleqtrdi A V R1 A WUni A On
9 eloni A On Ord A
10 8 9 syl A V R1 A WUni Ord A
11 n0i R1 A ¬ R1 A =
12 2 11 syl A V R1 A WUni ¬ R1 A =
13 fveq2 A = R1 A = R1
14 r10 R1 =
15 13 14 syl6eq A = R1 A =
16 12 15 nsyl A V R1 A WUni ¬ A =
17 suceloni A On suc A On
18 8 17 syl A V R1 A WUni suc A On
19 sucidg A On A suc A
20 8 19 syl A V R1 A WUni A suc A
21 r1ord suc A On A suc A R1 A R1 suc A
22 18 20 21 sylc A V R1 A WUni R1 A R1 suc A
23 r1elwf R1 A R1 suc A R1 A R1 On
24 wfelirr R1 A R1 On ¬ R1 A R1 A
25 22 23 24 3syl A V R1 A WUni ¬ R1 A R1 A
26 simprr A V R1 A WUni x On A = suc x A = suc x
27 26 fveq2d A V R1 A WUni x On A = suc x R1 A = R1 suc x
28 r1suc x On R1 suc x = 𝒫 R1 x
29 28 ad2antrl A V R1 A WUni x On A = suc x R1 suc x = 𝒫 R1 x
30 27 29 eqtrd A V R1 A WUni x On A = suc x R1 A = 𝒫 R1 x
31 simplr A V R1 A WUni x On A = suc x R1 A WUni
32 8 adantr A V R1 A WUni x On A = suc x A On
33 sucidg x On x suc x
34 33 ad2antrl A V R1 A WUni x On A = suc x x suc x
35 34 26 eleqtrrd A V R1 A WUni x On A = suc x x A
36 r1ord A On x A R1 x R1 A
37 32 35 36 sylc A V R1 A WUni x On A = suc x R1 x R1 A
38 31 37 wunpw A V R1 A WUni x On A = suc x 𝒫 R1 x R1 A
39 30 38 eqeltrd A V R1 A WUni x On A = suc x R1 A R1 A
40 39 rexlimdvaa A V R1 A WUni x On A = suc x R1 A R1 A
41 25 40 mtod A V R1 A WUni ¬ x On A = suc x
42 ioran ¬ A = x On A = suc x ¬ A = ¬ x On A = suc x
43 16 41 42 sylanbrc A V R1 A WUni ¬ A = x On A = suc x
44 dflim3 Lim A Ord A ¬ A = x On A = suc x
45 10 43 44 sylanbrc A V R1 A WUni Lim A
46 r1limwun A V Lim A R1 A WUni
47 45 46 impbida A V R1 A WUni Lim A