Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | refun0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | refbas | |
4 | 3 | adantr | |
5 | elun | |
|
6 | refssex | |
|
7 | 6 | adantlr | |
8 | 0ss | |
|
9 | 8 | a1i | |
10 | 9 | reximdva0 | |
11 | 10 | adantr | |
12 | elsni | |
|
13 | sseq1 | |
|
14 | 13 | rexbidv | |
15 | 12 14 | syl | |
16 | 15 | adantl | |
17 | 11 16 | mpbird | |
18 | 7 17 | jaodan | |
19 | 5 18 | sylan2b | |
20 | 19 | ralrimiva | |
21 | refrel | |
|
22 | 21 | brrelex1i | |
23 | p0ex | |
|
24 | unexg | |
|
25 | 22 23 24 | sylancl | |
26 | uniun | |
|
27 | 0ex | |
|
28 | 27 | unisn | |
29 | 28 | uneq2i | |
30 | un0 | |
|
31 | 26 29 30 | 3eqtrri | |
32 | 31 2 | isref | |
33 | 25 32 | syl | |
34 | 33 | adantr | |
35 | 4 20 34 | mpbir2and | |