Metamath Proof Explorer


Theorem refun0

Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020)

Ref Expression
Assertion refun0 ARefBBARefB

Proof

Step Hyp Ref Expression
1 eqid A=A
2 eqid B=B
3 1 2 refbas ARefBB=A
4 3 adantr ARefBBB=A
5 elun xAxAx
6 refssex ARefBxAyBxy
7 6 adantlr ARefBBxAyBxy
8 0ss y
9 8 a1i ARefByBy
10 9 reximdva0 ARefBByBy
11 10 adantr ARefBBxyBy
12 elsni xx=
13 sseq1 x=xyy
14 13 rexbidv x=yBxyyBy
15 12 14 syl xyBxyyBy
16 15 adantl ARefBBxyBxyyBy
17 11 16 mpbird ARefBBxyBxy
18 7 17 jaodan ARefBBxAxyBxy
19 5 18 sylan2b ARefBBxAyBxy
20 19 ralrimiva ARefBBxAyBxy
21 refrel RelRef
22 21 brrelex1i ARefBAV
23 p0ex V
24 unexg AVVAV
25 22 23 24 sylancl ARefBAV
26 uniun A=A
27 0ex V
28 27 unisn =
29 28 uneq2i A=A
30 un0 A=A
31 26 29 30 3eqtrri A=A
32 31 2 isref AVARefBB=AxAyBxy
33 25 32 syl ARefBARefBB=AxAyBxy
34 33 adantr ARefBBARefBB=AxAyBxy
35 4 20 34 mpbir2and ARefBBARefB