Metamath Proof Explorer


Theorem reglogleb

Description: General logarithm preserves <_ . (Contributed by Stefan O'Rear, 19-Oct-2014) (New usage is discouraged.) Use logbleb instead.

Ref Expression
Assertion reglogleb A+B+C+1<CABlogAlogClogBlogC

Proof

Step Hyp Ref Expression
1 logleb A+B+ABlogAlogB
2 1 adantr A+B+C+1<CABlogAlogB
3 relogcl A+logA
4 3 ad2antrr A+B+C+1<ClogA
5 relogcl B+logB
6 5 ad2antlr A+B+C+1<ClogB
7 relogcl C+logC
8 7 ad2antrl A+B+C+1<ClogC
9 log1 log1=0
10 1rp 1+
11 logltb 1+C+1<Clog1<logC
12 10 11 mpan C+1<Clog1<logC
13 12 biimpa C+1<Clog1<logC
14 9 13 eqbrtrrid C+1<C0<logC
15 14 adantl A+B+C+1<C0<logC
16 lediv1 logAlogBlogC0<logClogAlogBlogAlogClogBlogC
17 4 6 8 15 16 syl112anc A+B+C+1<ClogAlogBlogAlogClogBlogC
18 2 17 bitrd A+B+C+1<CABlogAlogClogBlogC