Metamath Proof Explorer


Theorem relexpmulnn

Description: With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion relexpmulnn RVI=JKJKRrJrK=RrI

Proof

Step Hyp Ref Expression
1 oveq2 x=1RrJrx=RrJr1
2 oveq2 x=1Jx= J1
3 2 oveq2d x=1RrJx=Rr J1
4 1 3 eqeq12d x=1RrJrx=RrJxRrJr1=Rr J1
5 4 imbi2d x=1JRVI=JKRrJrx=RrJxJRVI=JKRrJr1=Rr J1
6 oveq2 x=yRrJrx=RrJry
7 oveq2 x=yJx=Jy
8 7 oveq2d x=yRrJx=RrJy
9 6 8 eqeq12d x=yRrJrx=RrJxRrJry=RrJy
10 9 imbi2d x=yJRVI=JKRrJrx=RrJxJRVI=JKRrJry=RrJy
11 oveq2 x=y+1RrJrx=RrJry+1
12 oveq2 x=y+1Jx=Jy+1
13 12 oveq2d x=y+1RrJx=RrJy+1
14 11 13 eqeq12d x=y+1RrJrx=RrJxRrJry+1=RrJy+1
15 14 imbi2d x=y+1JRVI=JKRrJrx=RrJxJRVI=JKRrJry+1=RrJy+1
16 oveq2 x=KRrJrx=RrJrK
17 oveq2 x=KJx=JK
18 17 oveq2d x=KRrJx=RrJK
19 16 18 eqeq12d x=KRrJrx=RrJxRrJrK=RrJK
20 19 imbi2d x=KJRVI=JKRrJrx=RrJxJRVI=JKRrJrK=RrJK
21 ovexd JRVI=JKRrJV
22 21 relexp1d JRVI=JKRrJr1=RrJ
23 simp1 JRVI=JKJ
24 nnre JJ
25 ax-1rid J J1=J
26 23 24 25 3syl JRVI=JK J1=J
27 26 eqcomd JRVI=JKJ= J1
28 27 oveq2d JRVI=JKRrJ=Rr J1
29 22 28 eqtrd JRVI=JKRrJr1=Rr J1
30 ovex RrJV
31 simp1 yJRVI=JKRrJry=RrJyy
32 relexpsucnnr RrJVyRrJry+1=RrJryRrJ
33 30 31 32 sylancr yJRVI=JKRrJry=RrJyRrJry+1=RrJryRrJ
34 simp3 yJRVI=JKRrJry=RrJyRrJry=RrJy
35 34 coeq1d yJRVI=JKRrJry=RrJyRrJryRrJ=RrJyRrJ
36 simp21 yJRVI=JKRrJry=RrJyJ
37 36 31 nnmulcld yJRVI=JKRrJry=RrJyJy
38 simp22 yJRVI=JKRrJry=RrJyRV
39 relexpaddnn JyJRVRrJyRrJ=RrJy+J
40 37 36 38 39 syl3anc yJRVI=JKRrJry=RrJyRrJyRrJ=RrJy+J
41 35 40 eqtrd yJRVI=JKRrJry=RrJyRrJryRrJ=RrJy+J
42 36 nncnd yJRVI=JKRrJry=RrJyJ
43 31 nncnd yJRVI=JKRrJry=RrJyy
44 1cnd yJRVI=JKRrJry=RrJy1
45 42 43 44 adddid yJRVI=JKRrJry=RrJyJy+1=Jy+ J1
46 42 mulridd yJRVI=JKRrJry=RrJy J1=J
47 46 oveq2d yJRVI=JKRrJry=RrJyJy+ J1=Jy+J
48 45 47 eqtr2d yJRVI=JKRrJry=RrJyJy+J=Jy+1
49 48 oveq2d yJRVI=JKRrJry=RrJyRrJy+J=RrJy+1
50 41 49 eqtrd yJRVI=JKRrJry=RrJyRrJryRrJ=RrJy+1
51 33 50 eqtrd yJRVI=JKRrJry=RrJyRrJry+1=RrJy+1
52 51 3exp yJRVI=JKRrJry=RrJyRrJry+1=RrJy+1
53 52 a2d yJRVI=JKRrJry=RrJyJRVI=JKRrJry+1=RrJy+1
54 5 10 15 20 29 53 nnind KJRVI=JKRrJrK=RrJK
55 54 3expd KJRVI=JKRrJrK=RrJK
56 55 impcom JKRVI=JKRrJrK=RrJK
57 56 impd JKRVI=JKRrJrK=RrJK
58 57 impcom RVI=JKJKRrJrK=RrJK
59 simplr RVI=JKJKI=JK
60 59 eqcomd RVI=JKJKJK=I
61 60 oveq2d RVI=JKJKRrJK=RrI
62 58 61 eqtrd RVI=JKJKRrJrK=RrI