Description: With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | relexpmulnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | oveq2 | |
|
3 | 2 | oveq2d | |
4 | 1 3 | eqeq12d | |
5 | 4 | imbi2d | |
6 | oveq2 | |
|
7 | oveq2 | |
|
8 | 7 | oveq2d | |
9 | 6 8 | eqeq12d | |
10 | 9 | imbi2d | |
11 | oveq2 | |
|
12 | oveq2 | |
|
13 | 12 | oveq2d | |
14 | 11 13 | eqeq12d | |
15 | 14 | imbi2d | |
16 | oveq2 | |
|
17 | oveq2 | |
|
18 | 17 | oveq2d | |
19 | 16 18 | eqeq12d | |
20 | 19 | imbi2d | |
21 | ovexd | |
|
22 | 21 | relexp1d | |
23 | simp1 | |
|
24 | nnre | |
|
25 | ax-1rid | |
|
26 | 23 24 25 | 3syl | |
27 | 26 | eqcomd | |
28 | 27 | oveq2d | |
29 | 22 28 | eqtrd | |
30 | ovex | |
|
31 | simp1 | |
|
32 | relexpsucnnr | |
|
33 | 30 31 32 | sylancr | |
34 | simp3 | |
|
35 | 34 | coeq1d | |
36 | simp21 | |
|
37 | 36 31 | nnmulcld | |
38 | simp22 | |
|
39 | relexpaddnn | |
|
40 | 37 36 38 39 | syl3anc | |
41 | 35 40 | eqtrd | |
42 | 36 | nncnd | |
43 | 31 | nncnd | |
44 | 1cnd | |
|
45 | 42 43 44 | adddid | |
46 | 42 | mulridd | |
47 | 46 | oveq2d | |
48 | 45 47 | eqtr2d | |
49 | 48 | oveq2d | |
50 | 41 49 | eqtrd | |
51 | 33 50 | eqtrd | |
52 | 51 | 3exp | |
53 | 52 | a2d | |
54 | 5 10 15 20 29 53 | nnind | |
55 | 54 | 3expd | |
56 | 55 | impcom | |
57 | 56 | impd | |
58 | 57 | impcom | |
59 | simplr | |
|
60 | 59 | eqcomd | |
61 | 60 | oveq2d | |
62 | 58 61 | eqtrd | |