| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq2d |
|
| 3 |
2
|
eqeq2d |
|
| 4 |
|
nnmulscl |
|
| 5 |
|
1sno |
|
| 6 |
5
|
a1i |
|
| 7 |
|
nnsno |
|
| 8 |
7
|
adantr |
|
| 9 |
|
nnsno |
|
| 10 |
9
|
adantl |
|
| 11 |
|
nnne0s |
|
| 12 |
11
|
adantr |
|
| 13 |
|
nnne0s |
|
| 14 |
13
|
adantl |
|
| 15 |
6 8 6 10 12 14
|
divmuldivsd |
|
| 16 |
|
mulsrid |
|
| 17 |
5 16
|
ax-mp |
|
| 18 |
17
|
oveq1i |
|
| 19 |
15 18
|
eqtrdi |
|
| 20 |
19
|
oveq2d |
|
| 21 |
3 4 20
|
rspcedvdw |
|
| 22 |
|
eqeq1 |
|
| 23 |
22
|
rexbidv |
|
| 24 |
21 23
|
syl5ibrcom |
|
| 25 |
24
|
rexlimivv |
|
| 26 |
5
|
a1i |
|
| 27 |
|
nnsno |
|
| 28 |
|
nnne0s |
|
| 29 |
26 27 28
|
divscld |
|
| 30 |
29
|
mulsridd |
|
| 31 |
30
|
eqcomd |
|
| 32 |
31
|
oveq2d |
|
| 33 |
|
1nns |
|
| 34 |
|
oveq2 |
|
| 35 |
34
|
oveq1d |
|
| 36 |
35
|
oveq2d |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
|
oveq2 |
|
| 39 |
|
divs1 |
|
| 40 |
5 39
|
ax-mp |
|
| 41 |
38 40
|
eqtrdi |
|
| 42 |
41
|
oveq2d |
|
| 43 |
42
|
oveq2d |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
37 44
|
rspc2ev |
|
| 46 |
33 45
|
mp3an2 |
|
| 47 |
32 46
|
mpdan |
|
| 48 |
|
eqeq1 |
|
| 49 |
48
|
2rexbidv |
|
| 50 |
47 49
|
syl5ibrcom |
|
| 51 |
50
|
rexlimiv |
|
| 52 |
25 51
|
impbii |
|