Metamath Proof Explorer


Theorem resqrtcl

Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion resqrtcl A0AA

Proof

Step Hyp Ref Expression
1 resqrex A0Ay0yy2=A
2 simp1l A0Ay0yy2=AA
3 recn AA
4 sqrtval AA=ιx|x2=A0xix+
5 2 3 4 3syl A0Ay0yy2=AA=ιx|x2=A0xix+
6 simp3r A0Ay0yy2=Ay2=A
7 simp3l A0Ay0yy2=A0y
8 rere yy=y
9 8 3ad2ant2 A0Ay0yy2=Ay=y
10 7 9 breqtrrd A0Ay0yy2=A0y
11 rennim yiy+
12 11 3ad2ant2 A0Ay0yy2=Aiy+
13 6 10 12 3jca A0Ay0yy2=Ay2=A0yiy+
14 recn yy
15 14 3ad2ant2 A0Ay0yy2=Ay
16 resqreu A0A∃!xx2=A0xix+
17 16 3ad2ant1 A0Ay0yy2=A∃!xx2=A0xix+
18 oveq1 x=yx2=y2
19 18 eqeq1d x=yx2=Ay2=A
20 fveq2 x=yx=y
21 20 breq2d x=y0x0y
22 oveq2 x=yix=iy
23 neleq1 ix=iyix+iy+
24 22 23 syl x=yix+iy+
25 19 21 24 3anbi123d x=yx2=A0xix+y2=A0yiy+
26 25 riota2 y∃!xx2=A0xix+y2=A0yiy+ιx|x2=A0xix+=y
27 15 17 26 syl2anc A0Ay0yy2=Ay2=A0yiy+ιx|x2=A0xix+=y
28 13 27 mpbid A0Ay0yy2=Aιx|x2=A0xix+=y
29 5 28 eqtrd A0Ay0yy2=AA=y
30 simp2 A0Ay0yy2=Ay
31 29 30 eqeltrd A0Ay0yy2=AA
32 31 rexlimdv3a A0Ay0yy2=AA
33 1 32 mpd A0AA