Metamath Proof Explorer


Theorem ressress

Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014) (Proof shortened by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion ressress AXBYW𝑠A𝑠B=W𝑠AB

Proof

Step Hyp Ref Expression
1 simplr ¬BaseW𝑠AB¬BaseWAWVAXBY¬BaseWA
2 simpr1 ¬BaseW𝑠AB¬BaseWAWVAXBYWV
3 simpr2 ¬BaseW𝑠AB¬BaseWAWVAXBYAX
4 eqid W𝑠A=W𝑠A
5 eqid BaseW=BaseW
6 4 5 ressval2 ¬BaseWAWVAXW𝑠A=WsSetBasendxABaseW
7 1 2 3 6 syl3anc ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠A=WsSetBasendxABaseW
8 inass ABBaseW=ABBaseW
9 in12 ABBaseW=BABaseW
10 8 9 eqtri ABBaseW=BABaseW
11 4 5 ressbas AXABaseW=BaseW𝑠A
12 3 11 syl ¬BaseW𝑠AB¬BaseWAWVAXBYABaseW=BaseW𝑠A
13 12 ineq2d ¬BaseW𝑠AB¬BaseWAWVAXBYBABaseW=BBaseW𝑠A
14 10 13 eqtr2id ¬BaseW𝑠AB¬BaseWAWVAXBYBBaseW𝑠A=ABBaseW
15 14 opeq2d ¬BaseW𝑠AB¬BaseWAWVAXBYBasendxBBaseW𝑠A=BasendxABBaseW
16 7 15 oveq12d ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠AsSetBasendxBBaseW𝑠A=WsSetBasendxABaseWsSetBasendxABBaseW
17 fvex BaseWV
18 17 inex2 ABBaseWV
19 setsabs WVABBaseWVWsSetBasendxABaseWsSetBasendxABBaseW=WsSetBasendxABBaseW
20 2 18 19 sylancl ¬BaseW𝑠AB¬BaseWAWVAXBYWsSetBasendxABaseWsSetBasendxABBaseW=WsSetBasendxABBaseW
21 16 20 eqtrd ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠AsSetBasendxBBaseW𝑠A=WsSetBasendxABBaseW
22 simpll ¬BaseW𝑠AB¬BaseWAWVAXBY¬BaseW𝑠AB
23 ovexd ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠AV
24 simpr3 ¬BaseW𝑠AB¬BaseWAWVAXBYBY
25 eqid W𝑠A𝑠B=W𝑠A𝑠B
26 eqid BaseW𝑠A=BaseW𝑠A
27 25 26 ressval2 ¬BaseW𝑠ABW𝑠AVBYW𝑠A𝑠B=W𝑠AsSetBasendxBBaseW𝑠A
28 22 23 24 27 syl3anc ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠A𝑠B=W𝑠AsSetBasendxBBaseW𝑠A
29 inss1 ABA
30 sstr BaseWABABABaseWA
31 29 30 mpan2 BaseWABBaseWA
32 1 31 nsyl ¬BaseW𝑠AB¬BaseWAWVAXBY¬BaseWAB
33 inex1g AXABV
34 3 33 syl ¬BaseW𝑠AB¬BaseWAWVAXBYABV
35 eqid W𝑠AB=W𝑠AB
36 35 5 ressval2 ¬BaseWABWVABVW𝑠AB=WsSetBasendxABBaseW
37 32 2 34 36 syl3anc ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠AB=WsSetBasendxABBaseW
38 21 28 37 3eqtr4d ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠A𝑠B=W𝑠AB
39 38 exp31 ¬BaseW𝑠AB¬BaseWAWVAXBYW𝑠A𝑠B=W𝑠AB
40 ovex W𝑠AV
41 25 26 ressid2 BaseW𝑠ABW𝑠AVBYW𝑠A𝑠B=W𝑠A
42 40 41 mp3an2 BaseW𝑠ABBYW𝑠A𝑠B=W𝑠A
43 42 3ad2antr3 BaseW𝑠ABWVAXBYW𝑠A𝑠B=W𝑠A
44 in32 ABBaseW=ABaseWB
45 simpr2 BaseW𝑠ABWVAXBYAX
46 45 11 syl BaseW𝑠ABWVAXBYABaseW=BaseW𝑠A
47 simpl BaseW𝑠ABWVAXBYBaseW𝑠AB
48 46 47 eqsstrd BaseW𝑠ABWVAXBYABaseWB
49 df-ss ABaseWBABaseWB=ABaseW
50 48 49 sylib BaseW𝑠ABWVAXBYABaseWB=ABaseW
51 44 50 eqtr2id BaseW𝑠ABWVAXBYABaseW=ABBaseW
52 51 oveq2d BaseW𝑠ABWVAXBYW𝑠ABaseW=W𝑠ABBaseW
53 5 ressinbas AXW𝑠A=W𝑠ABaseW
54 45 53 syl BaseW𝑠ABWVAXBYW𝑠A=W𝑠ABaseW
55 5 ressinbas ABVW𝑠AB=W𝑠ABBaseW
56 45 33 55 3syl BaseW𝑠ABWVAXBYW𝑠AB=W𝑠ABBaseW
57 52 54 56 3eqtr4d BaseW𝑠ABWVAXBYW𝑠A=W𝑠AB
58 43 57 eqtrd BaseW𝑠ABWVAXBYW𝑠A𝑠B=W𝑠AB
59 58 ex BaseW𝑠ABWVAXBYW𝑠A𝑠B=W𝑠AB
60 4 5 ressid2 BaseWAWVAXW𝑠A=W
61 60 3adant3r3 BaseWAWVAXBYW𝑠A=W
62 61 oveq1d BaseWAWVAXBYW𝑠A𝑠B=W𝑠B
63 inss2 BBaseWBaseW
64 simpl BaseWAWVAXBYBaseWA
65 63 64 sstrid BaseWAWVAXBYBBaseWA
66 sseqin2 BBaseWAABBaseW=BBaseW
67 65 66 sylib BaseWAWVAXBYABBaseW=BBaseW
68 8 67 eqtr2id BaseWAWVAXBYBBaseW=ABBaseW
69 68 oveq2d BaseWAWVAXBYW𝑠BBaseW=W𝑠ABBaseW
70 simpr3 BaseWAWVAXBYBY
71 5 ressinbas BYW𝑠B=W𝑠BBaseW
72 70 71 syl BaseWAWVAXBYW𝑠B=W𝑠BBaseW
73 simpr2 BaseWAWVAXBYAX
74 73 33 55 3syl BaseWAWVAXBYW𝑠AB=W𝑠ABBaseW
75 69 72 74 3eqtr4d BaseWAWVAXBYW𝑠B=W𝑠AB
76 62 75 eqtrd BaseWAWVAXBYW𝑠A𝑠B=W𝑠AB
77 76 ex BaseWAWVAXBYW𝑠A𝑠B=W𝑠AB
78 39 59 77 pm2.61ii WVAXBYW𝑠A𝑠B=W𝑠AB
79 78 3expib WVAXBYW𝑠A𝑠B=W𝑠AB
80 ress0 𝑠B=
81 reldmress Reldom𝑠
82 81 ovprc1 ¬WVW𝑠A=
83 82 oveq1d ¬WVW𝑠A𝑠B=𝑠B
84 81 ovprc1 ¬WVW𝑠AB=
85 80 83 84 3eqtr4a ¬WVW𝑠A𝑠B=W𝑠AB
86 85 a1d ¬WVAXBYW𝑠A𝑠B=W𝑠AB
87 79 86 pm2.61i AXBYW𝑠A𝑠B=W𝑠AB