Metamath Proof Explorer


Theorem resssetc

Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses resssetc.c C=SetCatU
resssetc.d D=SetCatV
resssetc.1 φUW
resssetc.2 φVU
Assertion resssetc φHom𝑓C𝑠V=Hom𝑓Dcomp𝑓C𝑠V=comp𝑓D

Proof

Step Hyp Ref Expression
1 resssetc.c C=SetCatU
2 resssetc.d D=SetCatV
3 resssetc.1 φUW
4 resssetc.2 φVU
5 3 4 ssexd φVV
6 5 adantr φxVyVVV
7 eqid HomD=HomD
8 simprl φxVyVxV
9 simprr φxVyVyV
10 2 6 7 8 9 setchom φxVyVxHomDy=yx
11 3 adantr φxVyVUW
12 eqid HomC=HomC
13 4 adantr φxVyVVU
14 13 8 sseldd φxVyVxU
15 13 9 sseldd φxVyVyU
16 1 11 12 14 15 setchom φxVyVxHomCy=yx
17 eqid C𝑠V=C𝑠V
18 17 12 resshom VVHomC=HomC𝑠V
19 5 18 syl φHomC=HomC𝑠V
20 19 oveqdr φxVyVxHomCy=xHomC𝑠Vy
21 10 16 20 3eqtr2rd φxVyVxHomC𝑠Vy=xHomDy
22 21 ralrimivva φxVyVxHomC𝑠Vy=xHomDy
23 eqid HomC𝑠V=HomC𝑠V
24 1 3 setcbas φU=BaseC
25 4 24 sseqtrd φVBaseC
26 eqid BaseC=BaseC
27 17 26 ressbas2 VBaseCV=BaseC𝑠V
28 25 27 syl φV=BaseC𝑠V
29 2 5 setcbas φV=BaseD
30 23 7 28 29 homfeq φHom𝑓C𝑠V=Hom𝑓DxVyVxHomC𝑠Vy=xHomDy
31 22 30 mpbird φHom𝑓C𝑠V=Hom𝑓D
32 5 ad2antrr φxVyVzVfxHomDygyHomDzVV
33 eqid compD=compD
34 simplr1 φxVyVzVfxHomDygyHomDzxV
35 simplr2 φxVyVzVfxHomDygyHomDzyV
36 simplr3 φxVyVzVfxHomDygyHomDzzV
37 simprl φxVyVzVfxHomDygyHomDzfxHomDy
38 2 32 7 34 35 elsetchom φxVyVzVfxHomDygyHomDzfxHomDyf:xy
39 37 38 mpbid φxVyVzVfxHomDygyHomDzf:xy
40 simprr φxVyVzVfxHomDygyHomDzgyHomDz
41 2 32 7 35 36 elsetchom φxVyVzVfxHomDygyHomDzgyHomDzg:yz
42 40 41 mpbid φxVyVzVfxHomDygyHomDzg:yz
43 2 32 33 34 35 36 39 42 setcco φxVyVzVfxHomDygyHomDzgxycompDzf=gf
44 3 ad2antrr φxVyVzVfxHomDygyHomDzUW
45 eqid compC=compC
46 4 ad2antrr φxVyVzVfxHomDygyHomDzVU
47 46 34 sseldd φxVyVzVfxHomDygyHomDzxU
48 46 35 sseldd φxVyVzVfxHomDygyHomDzyU
49 46 36 sseldd φxVyVzVfxHomDygyHomDzzU
50 1 44 45 47 48 49 39 42 setcco φxVyVzVfxHomDygyHomDzgxycompCzf=gf
51 17 45 ressco VVcompC=compC𝑠V
52 5 51 syl φcompC=compC𝑠V
53 52 ad2antrr φxVyVzVfxHomDygyHomDzcompC=compC𝑠V
54 53 oveqd φxVyVzVfxHomDygyHomDzxycompCz=xycompC𝑠Vz
55 54 oveqd φxVyVzVfxHomDygyHomDzgxycompCzf=gxycompC𝑠Vzf
56 43 50 55 3eqtr2d φxVyVzVfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
57 56 ralrimivva φxVyVzVfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
58 57 ralrimivvva φxVyVzVfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
59 eqid compC𝑠V=compC𝑠V
60 31 eqcomd φHom𝑓D=Hom𝑓C𝑠V
61 33 59 7 29 28 60 comfeq φcomp𝑓D=comp𝑓C𝑠VxVyVzVfxHomDygyHomDzgxycompDzf=gxycompC𝑠Vzf
62 58 61 mpbird φcomp𝑓D=comp𝑓C𝑠V
63 62 eqcomd φcomp𝑓C𝑠V=comp𝑓D
64 31 63 jca φHom𝑓C𝑠V=Hom𝑓Dcomp𝑓C𝑠V=comp𝑓D