Description: The restriction of the category of sets to a subset is the category of sets in the subset. Thus, the SetCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resssetc.c | |
|
resssetc.d | |
||
resssetc.1 | |
||
resssetc.2 | |
||
Assertion | resssetc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resssetc.c | |
|
2 | resssetc.d | |
|
3 | resssetc.1 | |
|
4 | resssetc.2 | |
|
5 | 3 4 | ssexd | |
6 | 5 | adantr | |
7 | eqid | |
|
8 | simprl | |
|
9 | simprr | |
|
10 | 2 6 7 8 9 | setchom | |
11 | 3 | adantr | |
12 | eqid | |
|
13 | 4 | adantr | |
14 | 13 8 | sseldd | |
15 | 13 9 | sseldd | |
16 | 1 11 12 14 15 | setchom | |
17 | eqid | |
|
18 | 17 12 | resshom | |
19 | 5 18 | syl | |
20 | 19 | oveqdr | |
21 | 10 16 20 | 3eqtr2rd | |
22 | 21 | ralrimivva | |
23 | eqid | |
|
24 | 1 3 | setcbas | |
25 | 4 24 | sseqtrd | |
26 | eqid | |
|
27 | 17 26 | ressbas2 | |
28 | 25 27 | syl | |
29 | 2 5 | setcbas | |
30 | 23 7 28 29 | homfeq | |
31 | 22 30 | mpbird | |
32 | 5 | ad2antrr | |
33 | eqid | |
|
34 | simplr1 | |
|
35 | simplr2 | |
|
36 | simplr3 | |
|
37 | simprl | |
|
38 | 2 32 7 34 35 | elsetchom | |
39 | 37 38 | mpbid | |
40 | simprr | |
|
41 | 2 32 7 35 36 | elsetchom | |
42 | 40 41 | mpbid | |
43 | 2 32 33 34 35 36 39 42 | setcco | |
44 | 3 | ad2antrr | |
45 | eqid | |
|
46 | 4 | ad2antrr | |
47 | 46 34 | sseldd | |
48 | 46 35 | sseldd | |
49 | 46 36 | sseldd | |
50 | 1 44 45 47 48 49 39 42 | setcco | |
51 | 17 45 | ressco | |
52 | 5 51 | syl | |
53 | 52 | ad2antrr | |
54 | 53 | oveqd | |
55 | 54 | oveqd | |
56 | 43 50 55 | 3eqtr2d | |
57 | 56 | ralrimivva | |
58 | 57 | ralrimivvva | |
59 | eqid | |
|
60 | 31 | eqcomd | |
61 | 33 59 7 29 28 60 | comfeq | |
62 | 58 61 | mpbird | |
63 | 62 | eqcomd | |
64 | 31 63 | jca | |