| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmghm |  | 
						
							| 2 |  | subrngsubg |  | 
						
							| 3 |  | ghmima |  | 
						
							| 4 | 1 2 3 | syl2an |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 5 6 | rhmmhm |  | 
						
							| 8 |  | simpl |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 5 9 | mgpbas |  | 
						
							| 11 | 10 | eqcomi |  | 
						
							| 12 | 11 | subrngss |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 |  | eqidd |  | 
						
							| 15 |  | eqidd |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 5 16 | mgpplusg |  | 
						
							| 18 | 17 | eqcomi |  | 
						
							| 19 | 18 | subrngmcl |  | 
						
							| 20 | 19 | 3adant1l |  | 
						
							| 21 | 8 13 14 15 20 | mhmimalem |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 6 22 | mgpplusg |  | 
						
							| 24 | 23 | eqcomi |  | 
						
							| 25 | 24 | oveqi |  | 
						
							| 26 | 25 | eleq1i |  | 
						
							| 27 | 26 | 2ralbii |  | 
						
							| 28 | 21 27 | sylib |  | 
						
							| 29 | 7 28 | sylan |  | 
						
							| 30 |  | rhmrcl2 |  | 
						
							| 31 |  | ringrng |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 34 22 | issubrng2 |  | 
						
							| 36 | 33 35 | syl |  | 
						
							| 37 | 4 29 36 | mpbir2and |  |