Metamath Proof Explorer


Theorem ringcbas

Description: Set of objects of the category of unital rings (in a universe). (Contributed by AV, 13-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcbas.c C=RingCatU
ringcbas.b B=BaseC
ringcbas.u φUV
Assertion ringcbas φB=URing

Proof

Step Hyp Ref Expression
1 ringcbas.c C=RingCatU
2 ringcbas.b B=BaseC
3 ringcbas.u φUV
4 eqidd φURing=URing
5 eqidd φRingHomURing×URing=RingHomURing×URing
6 1 3 4 5 ringcval φC=ExtStrCatUcatRingHomURing×URing
7 6 fveq2d φBaseC=BaseExtStrCatUcatRingHomURing×URing
8 2 a1i φB=BaseC
9 eqid ExtStrCatUcatRingHomURing×URing=ExtStrCatUcatRingHomURing×URing
10 eqid BaseExtStrCatU=BaseExtStrCatU
11 fvexd φExtStrCatUV
12 4 5 rhmresfn φRingHomURing×URingFnURing×URing
13 inss1 URingU
14 eqid ExtStrCatU=ExtStrCatU
15 14 3 estrcbas φU=BaseExtStrCatU
16 13 15 sseqtrid φURingBaseExtStrCatU
17 9 10 11 12 16 rescbas φURing=BaseExtStrCatUcatRingHomURing×URing
18 7 8 17 3eqtr4d φB=URing