Metamath Proof Explorer


Theorem ringccat

Description: The category of unital rings is a category. (Contributed by AV, 14-Feb-2020) (Revised by AV, 9-Mar-2020)

Ref Expression
Hypothesis ringccat.c C=RingCatU
Assertion ringccat UVCCat

Proof

Step Hyp Ref Expression
1 ringccat.c C=RingCatU
2 id UVUV
3 eqidd UVURing=URing
4 eqidd UVRingHomURing×URing=RingHomURing×URing
5 1 2 3 4 ringcval UVC=ExtStrCatUcatRingHomURing×URing
6 eqid ExtStrCatUcatRingHomURing×URing=ExtStrCatUcatRingHomURing×URing
7 eqid ExtStrCatU=ExtStrCatU
8 eqidd UVRingU=RingU
9 incom URing=RingU
10 9 a1i UVURing=RingU
11 10 sqxpeqd UVURing×URing=RingU×RingU
12 11 reseq2d UVRingHomURing×URing=RingHomRingU×RingU
13 7 2 8 12 rhmsubcsetc UVRingHomURing×URingSubcatExtStrCatU
14 6 13 subccat UVExtStrCatUcatRingHomURing×URingCat
15 5 14 eqeltrd UVCCat