Metamath Proof Explorer


Theorem ringccofval

Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcco.c C=RingCatU
ringcco.u φUV
ringcco.o ·˙=compC
Assertion ringccofval φ·˙=compExtStrCatU

Proof

Step Hyp Ref Expression
1 ringcco.c C=RingCatU
2 ringcco.u φUV
3 ringcco.o ·˙=compC
4 eqid BaseC=BaseC
5 1 4 2 ringcbas φBaseC=URing
6 eqid HomC=HomC
7 1 4 2 6 ringchomfval φHomC=RingHomBaseC×BaseC
8 1 2 5 7 ringcval φC=ExtStrCatUcatHomC
9 8 fveq2d φcompC=compExtStrCatUcatHomC
10 3 a1i φ·˙=compC
11 eqid ExtStrCatUcatHomC=ExtStrCatUcatHomC
12 eqid BaseExtStrCatU=BaseExtStrCatU
13 fvexd φExtStrCatUV
14 5 7 rhmresfn φHomCFnBaseC×BaseC
15 inss1 URingU
16 15 a1i φURingU
17 eqid ExtStrCatU=ExtStrCatU
18 17 2 estrcbas φU=BaseExtStrCatU
19 18 eqcomd φBaseExtStrCatU=U
20 16 5 19 3sstr4d φBaseCBaseExtStrCatU
21 eqid compExtStrCatU=compExtStrCatU
22 11 12 13 14 20 21 rescco φcompExtStrCatU=compExtStrCatUcatHomC
23 9 10 22 3eqtr4d φ·˙=compExtStrCatU