Metamath Proof Explorer


Theorem ringccofval

Description: Composition in the category of unital rings. (Contributed by AV, 14-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses ringcco.c C = RingCat U
ringcco.u φ U V
ringcco.o · ˙ = comp C
Assertion ringccofval φ · ˙ = comp ExtStrCat U

Proof

Step Hyp Ref Expression
1 ringcco.c C = RingCat U
2 ringcco.u φ U V
3 ringcco.o · ˙ = comp C
4 eqid Base C = Base C
5 1 4 2 ringcbas φ Base C = U Ring
6 eqid Hom C = Hom C
7 1 4 2 6 ringchomfval φ Hom C = RingHom Base C × Base C
8 1 2 5 7 ringcval φ C = ExtStrCat U cat Hom C
9 8 fveq2d φ comp C = comp ExtStrCat U cat Hom C
10 3 a1i φ · ˙ = comp C
11 eqid ExtStrCat U cat Hom C = ExtStrCat U cat Hom C
12 eqid Base ExtStrCat U = Base ExtStrCat U
13 fvexd φ ExtStrCat U V
14 5 7 rhmresfn φ Hom C Fn Base C × Base C
15 inss1 U Ring U
16 15 a1i φ U Ring U
17 eqid ExtStrCat U = ExtStrCat U
18 17 2 estrcbas φ U = Base ExtStrCat U
19 18 eqcomd φ Base ExtStrCat U = U
20 16 5 19 3sstr4d φ Base C Base ExtStrCat U
21 eqid comp ExtStrCat U = comp ExtStrCat U
22 11 12 13 14 20 21 rescco φ comp ExtStrCat U = comp ExtStrCat U cat Hom C
23 9 10 22 3eqtr4d φ · ˙ = comp ExtStrCat U