Metamath Proof Explorer


Theorem ringlsmss1

Description: The product of an ideal I of a commutative ring R with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024)

Ref Expression
Hypotheses ringlsmss.1 B = Base R
ringlsmss.2 G = mulGrp R
ringlsmss.3 × ˙ = LSSum G
ringlsmss1.1 φ R CRing
ringlsmss1.2 φ E B
ringlsmss1.3 φ I LIdeal R
Assertion ringlsmss1 φ I × ˙ E I

Proof

Step Hyp Ref Expression
1 ringlsmss.1 B = Base R
2 ringlsmss.2 G = mulGrp R
3 ringlsmss.3 × ˙ = LSSum G
4 ringlsmss1.1 φ R CRing
5 ringlsmss1.2 φ E B
6 ringlsmss1.3 φ I LIdeal R
7 simpr φ a I × ˙ E i I e E a = i R e a = i R e
8 4 ad2antrr φ i I e E R CRing
9 5 sselda φ e E e B
10 9 adantlr φ i I e E e B
11 eqid LIdeal R = LIdeal R
12 1 11 lidlss I LIdeal R I B
13 6 12 syl φ I B
14 13 sselda φ i I i B
15 14 adantr φ i I e E i B
16 eqid R = R
17 1 16 crngcom R CRing e B i B e R i = i R e
18 8 10 15 17 syl3anc φ i I e E e R i = i R e
19 crngring R CRing R Ring
20 4 19 syl φ R Ring
21 20 ad2antrr φ i I e E R Ring
22 6 ad2antrr φ i I e E I LIdeal R
23 simplr φ i I e E i I
24 11 1 16 lidlmcl R Ring I LIdeal R e B i I e R i I
25 21 22 10 23 24 syl22anc φ i I e E e R i I
26 18 25 eqeltrrd φ i I e E i R e I
27 26 adantllr φ a I × ˙ E i I e E i R e I
28 27 adantr φ a I × ˙ E i I e E a = i R e i R e I
29 7 28 eqeltrd φ a I × ˙ E i I e E a = i R e a I
30 1 16 2 3 13 5 elringlsm φ a I × ˙ E i I e E a = i R e
31 30 biimpa φ a I × ˙ E i I e E a = i R e
32 29 31 r19.29vva φ a I × ˙ E a I
33 32 ex φ a I × ˙ E a I
34 33 ssrdv φ I × ˙ E I