Description: The product of an ideal I of a commutative ring R with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringlsmss.1 | |
|
ringlsmss.2 | |
||
ringlsmss.3 | |
||
ringlsmss1.1 | |
||
ringlsmss1.2 | |
||
ringlsmss1.3 | |
||
Assertion | ringlsmss1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlsmss.1 | |
|
2 | ringlsmss.2 | |
|
3 | ringlsmss.3 | |
|
4 | ringlsmss1.1 | |
|
5 | ringlsmss1.2 | |
|
6 | ringlsmss1.3 | |
|
7 | simpr | |
|
8 | 4 | ad2antrr | |
9 | 5 | sselda | |
10 | 9 | adantlr | |
11 | eqid | |
|
12 | 1 11 | lidlss | |
13 | 6 12 | syl | |
14 | 13 | sselda | |
15 | 14 | adantr | |
16 | eqid | |
|
17 | 1 16 | crngcom | |
18 | 8 10 15 17 | syl3anc | |
19 | crngring | |
|
20 | 4 19 | syl | |
21 | 20 | ad2antrr | |
22 | 6 | ad2antrr | |
23 | simplr | |
|
24 | 11 1 16 | lidlmcl | |
25 | 21 22 10 23 24 | syl22anc | |
26 | 18 25 | eqeltrrd | |
27 | 26 | adantllr | |
28 | 27 | adantr | |
29 | 7 28 | eqeltrd | |
30 | 1 16 2 3 13 5 | elringlsm | |
31 | 30 | biimpa | |
32 | 29 31 | r19.29vva | |
33 | 32 | ex | |
34 | 33 | ssrdv | |