Metamath Proof Explorer


Theorem ringlsmss1

Description: The product of an ideal I of a commutative ring R with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024)

Ref Expression
Hypotheses ringlsmss.1 B=BaseR
ringlsmss.2 G=mulGrpR
ringlsmss.3 ×˙=LSSumG
ringlsmss1.1 φRCRing
ringlsmss1.2 φEB
ringlsmss1.3 φILIdealR
Assertion ringlsmss1 φI×˙EI

Proof

Step Hyp Ref Expression
1 ringlsmss.1 B=BaseR
2 ringlsmss.2 G=mulGrpR
3 ringlsmss.3 ×˙=LSSumG
4 ringlsmss1.1 φRCRing
5 ringlsmss1.2 φEB
6 ringlsmss1.3 φILIdealR
7 simpr φaI×˙EiIeEa=iRea=iRe
8 4 ad2antrr φiIeERCRing
9 5 sselda φeEeB
10 9 adantlr φiIeEeB
11 eqid LIdealR=LIdealR
12 1 11 lidlss ILIdealRIB
13 6 12 syl φIB
14 13 sselda φiIiB
15 14 adantr φiIeEiB
16 eqid R=R
17 1 16 crngcom RCRingeBiBeRi=iRe
18 8 10 15 17 syl3anc φiIeEeRi=iRe
19 crngring RCRingRRing
20 4 19 syl φRRing
21 20 ad2antrr φiIeERRing
22 6 ad2antrr φiIeEILIdealR
23 simplr φiIeEiI
24 11 1 16 lidlmcl RRingILIdealReBiIeRiI
25 21 22 10 23 24 syl22anc φiIeEeRiI
26 18 25 eqeltrrd φiIeEiReI
27 26 adantllr φaI×˙EiIeEiReI
28 27 adantr φaI×˙EiIeEa=iReiReI
29 7 28 eqeltrd φaI×˙EiIeEa=iReaI
30 1 16 2 3 13 5 elringlsm φaI×˙EiIeEa=iRe
31 30 biimpa φaI×˙EiIeEa=iRe
32 29 31 r19.29vva φaI×˙EaI
33 32 ex φaI×˙EaI
34 33 ssrdv φI×˙EI