Metamath Proof Explorer


Theorem rlimcn1

Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 17-Sep-2014)

Ref Expression
Hypotheses rlimcn1.1 φG:AX
rlimcn1.2 φCX
rlimcn1.3 φGC
rlimcn1.4 φF:X
rlimcn1.5 φx+y+zXzC<yFzFC<x
Assertion rlimcn1 φFGFC

Proof

Step Hyp Ref Expression
1 rlimcn1.1 φG:AX
2 rlimcn1.2 φCX
3 rlimcn1.3 φGC
4 rlimcn1.4 φF:X
5 rlimcn1.5 φx+y+zXzC<yFzFC<x
6 1 ffvelcdmda φwAGwX
7 1 feqmptd φG=wAGw
8 4 feqmptd φF=vXFv
9 fveq2 v=GwFv=FGw
10 6 7 8 9 fmptco φFG=wAFGw
11 fvexd φx+y+wAGwV
12 11 ralrimiva φx+y+wAGwV
13 simpr φx+y+y+
14 7 3 eqbrtrrd φwAGwC
15 14 ad2antrr φx+y+wAGwC
16 12 13 15 rlimi φx+y+cwAcwGwC<y
17 fvoveq1 z=GwzC=GwC
18 17 breq1d z=GwzC<yGwC<y
19 18 imbrov2fvoveq z=GwzC<yFzFC<xGwC<yFGwFC<x
20 simplrr φx+y+zXzC<yFzFC<xwAzXzC<yFzFC<x
21 6 ad4ant14 φx+y+zXzC<yFzFC<xwAGwX
22 19 20 21 rspcdva φx+y+zXzC<yFzFC<xwAGwC<yFGwFC<x
23 22 imim2d φx+y+zXzC<yFzFC<xwAcwGwC<ycwFGwFC<x
24 23 ralimdva φx+y+zXzC<yFzFC<xwAcwGwC<ywAcwFGwFC<x
25 24 reximdv φx+y+zXzC<yFzFC<xcwAcwGwC<ycwAcwFGwFC<x
26 25 expr φx+y+zXzC<yFzFC<xcwAcwGwC<ycwAcwFGwFC<x
27 16 26 mpid φx+y+zXzC<yFzFC<xcwAcwFGwFC<x
28 27 rexlimdva φx+y+zXzC<yFzFC<xcwAcwFGwFC<x
29 5 28 mpd φx+cwAcwFGwFC<x
30 29 ralrimiva φx+cwAcwFGwFC<x
31 4 ffvelcdmda φGwXFGw
32 6 31 syldan φwAFGw
33 32 ralrimiva φwAFGw
34 1 fdmd φdomG=A
35 rlimss GCdomG
36 3 35 syl φdomG
37 34 36 eqsstrrd φA
38 4 2 ffvelcdmd φFC
39 33 37 38 rlim2 φwAFGwFCx+cwAcwFGwFC<x
40 30 39 mpbird φwAFGwFC
41 10 40 eqbrtrd φFGFC