Metamath Proof Explorer


Theorem rlimo1

Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion rlimo1 FAF𝑂1

Proof

Step Hyp Ref Expression
1 rlimf FAF:domF
2 1 ffvelcdmda FAzdomFFz
3 2 ralrimiva FAzdomFFz
4 1rp 1+
5 4 a1i FA1+
6 1 feqmptd FAF=zdomFFz
7 id FAFA
8 6 7 eqbrtrrd FAzdomFFzA
9 3 5 8 rlimi FAyzdomFyzFzA<1
10 rlimcl FAA
11 10 adantr FAyA
12 11 abscld FAyA
13 peano2re AA+1
14 12 13 syl FAyA+1
15 2 adantlr FAyzdomFFz
16 11 adantr FAyzdomFA
17 15 16 abs2difd FAyzdomFFzAFzA
18 15 abscld FAyzdomFFz
19 12 adantr FAyzdomFA
20 18 19 resubcld FAyzdomFFzA
21 15 16 subcld FAyzdomFFzA
22 21 abscld FAyzdomFFzA
23 1red FAyzdomF1
24 lelttr FzAFzA1FzAFzAFzA<1FzA<1
25 20 22 23 24 syl3anc FAyzdomFFzAFzAFzA<1FzA<1
26 17 25 mpand FAyzdomFFzA<1FzA<1
27 18 19 23 ltsubadd2d FAyzdomFFzA<1Fz<A+1
28 26 27 sylibd FAyzdomFFzA<1Fz<A+1
29 14 adantr FAyzdomFA+1
30 ltle FzA+1Fz<A+1FzA+1
31 18 29 30 syl2anc FAyzdomFFz<A+1FzA+1
32 28 31 syld FAyzdomFFzA<1FzA+1
33 32 imim2d FAyzdomFyzFzA<1yzFzA+1
34 33 ralimdva FAyzdomFyzFzA<1zdomFyzFzA+1
35 breq2 w=A+1FzwFzA+1
36 35 imbi2d w=A+1yzFzwyzFzA+1
37 36 ralbidv w=A+1zdomFyzFzwzdomFyzFzA+1
38 37 rspcev A+1zdomFyzFzA+1wzdomFyzFzw
39 14 34 38 syl6an FAyzdomFyzFzA<1wzdomFyzFzw
40 39 reximdva FAyzdomFyzFzA<1ywzdomFyzFzw
41 9 40 mpd FAywzdomFyzFzw
42 rlimss FAdomF
43 elo12 F:domFdomFF𝑂1ywzdomFyzFzw
44 1 42 43 syl2anc FAF𝑂1ywzdomFyzFzw
45 41 44 mpbird FAF𝑂1