Description: Any function with a finite limit is eventually bounded. (Contributed by Mario Carneiro, 18-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rlimo1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimf | |
|
2 | 1 | ffvelcdmda | |
3 | 2 | ralrimiva | |
4 | 1rp | |
|
5 | 4 | a1i | |
6 | 1 | feqmptd | |
7 | id | |
|
8 | 6 7 | eqbrtrrd | |
9 | 3 5 8 | rlimi | |
10 | rlimcl | |
|
11 | 10 | adantr | |
12 | 11 | abscld | |
13 | peano2re | |
|
14 | 12 13 | syl | |
15 | 2 | adantlr | |
16 | 11 | adantr | |
17 | 15 16 | abs2difd | |
18 | 15 | abscld | |
19 | 12 | adantr | |
20 | 18 19 | resubcld | |
21 | 15 16 | subcld | |
22 | 21 | abscld | |
23 | 1red | |
|
24 | lelttr | |
|
25 | 20 22 23 24 | syl3anc | |
26 | 17 25 | mpand | |
27 | 18 19 23 | ltsubadd2d | |
28 | 26 27 | sylibd | |
29 | 14 | adantr | |
30 | ltle | |
|
31 | 18 29 30 | syl2anc | |
32 | 28 31 | syld | |
33 | 32 | imim2d | |
34 | 33 | ralimdva | |
35 | breq2 | |
|
36 | 35 | imbi2d | |
37 | 36 | ralbidv | |
38 | 37 | rspcev | |
39 | 14 34 38 | syl6an | |
40 | 39 | reximdva | |
41 | 9 40 | mpd | |
42 | rlimss | |
|
43 | elo12 | |
|
44 | 1 42 43 | syl2anc | |
45 | 41 44 | mpbird | |