Metamath Proof Explorer


Theorem rmxnn

Description: The X-sequence is defined to range over NN0 but never actually takes the value 0. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Assertion rmxnn A2NAXrmN

Proof

Step Hyp Ref Expression
1 nn0z N0N
2 frmx Xrm:2×0
3 2 fovcl A2NAXrmN0
4 1 3 sylan2 A2N0AXrmN0
5 rmxypos A2N00<AXrmN0AYrmN
6 5 simpld A2N00<AXrmN
7 elnnnn0b AXrmNAXrmN00<AXrmN
8 4 6 7 sylanbrc A2N0AXrmN
9 8 adantlr A2NN0AXrmN
10 rmxneg A2NAXrm- N=AXrmN
11 10 adantr A2NN0AXrm- N=AXrmN
12 nn0z N0N
13 2 fovcl A2NAXrm- N0
14 12 13 sylan2 A2N0AXrm- N0
15 rmxypos A2N00<AXrm- N0AYrm- N
16 15 simpld A2N00<AXrm- N
17 elnnnn0b AXrm- NAXrm- N00<AXrm- N
18 14 16 17 sylanbrc A2N0AXrm- N
19 18 adantlr A2NN0AXrm- N
20 11 19 eqeltrrd A2NN0AXrmN
21 elznn0 NNN0N0
22 21 simprbi NN0N0
23 22 adantl A2NN0N0
24 9 20 23 mpjaodan A2NAXrmN