Metamath Proof Explorer


Theorem rmxy0

Description: Value of the X and Y sequences at 0. (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxy0 A2AXrm0=1AYrm0=0

Proof

Step Hyp Ref Expression
1 0z 0
2 rmxyval A20AXrm0+A21AYrm0=A+A210
3 1 2 mpan2 A2AXrm0+A21AYrm0=A+A210
4 rmbaserp A2A+A21+
5 4 rpcnd A2A+A21
6 5 exp0d A2A+A210=1
7 rmspecpos A2A21+
8 7 rpcnd A2A21
9 8 sqrtcld A2A21
10 9 mul01d A2A210=0
11 10 oveq2d A21+A210=1+0
12 1p0e1 1+0=1
13 11 12 eqtr2di A21=1+A210
14 3 6 13 3eqtrd A2AXrm0+A21AYrm0=1+A210
15 rmspecsqrtnq A2A21
16 nn0ssq 0
17 frmx Xrm:2×0
18 17 fovcl A20AXrm00
19 1 18 mpan2 A2AXrm00
20 16 19 sselid A2AXrm0
21 zssq
22 frmy Yrm:2×
23 22 fovcl A20AYrm0
24 1 23 mpan2 A2AYrm0
25 21 24 sselid A2AYrm0
26 1z 1
27 21 26 sselii 1
28 27 a1i A21
29 21 1 sselii 0
30 29 a1i A20
31 qirropth A21AXrm0AYrm010AXrm0+A21AYrm0=1+A210AXrm0=1AYrm0=0
32 15 20 25 28 30 31 syl122anc A2AXrm0+A21AYrm0=1+A210AXrm0=1AYrm0=0
33 14 32 mpbid A2AXrm0=1AYrm0=0