Metamath Proof Explorer


Theorem rnglidlmsgrp

Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020) Generalization for non-unital rings. The assumption .0. e. U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025)

Ref Expression
Hypotheses rnglidlabl.l L=LIdealR
rnglidlabl.i I=R𝑠U
rnglidlabl.z 0˙=0R
Assertion rnglidlmsgrp Could not format assertion : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-

Proof

Step Hyp Ref Expression
1 rnglidlabl.l L=LIdealR
2 rnglidlabl.i I=R𝑠U
3 rnglidlabl.z 0˙=0R
4 1 2 3 rnglidlmmgm RRngUL0˙UmulGrpIMgm
5 eqid mulGrpR=mulGrpR
6 5 rngmgp Could not format ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( R e. Rng -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
7 6 3ad2ant1 Could not format ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` R ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` R ) e. Smgrp ) with typecode |-
8 1 2 lidlssbas ULBaseIBaseR
9 8 sseld ULaBaseIaBaseR
10 8 sseld ULbBaseIbBaseR
11 8 sseld ULcBaseIcBaseR
12 9 10 11 3anim123d ULaBaseIbBaseIcBaseIaBaseRbBaseRcBaseR
13 12 3ad2ant2 RRngUL0˙UaBaseIbBaseIcBaseIaBaseRbBaseRcBaseR
14 13 imp RRngUL0˙UaBaseIbBaseIcBaseIaBaseRbBaseRcBaseR
15 eqid BaseR=BaseR
16 5 15 mgpbas BaseR=BasemulGrpR
17 eqid R=R
18 5 17 mgpplusg R=+mulGrpR
19 16 18 sgrpass Could not format ( ( ( mulGrp ` R ) e. Smgrp /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) : No typesetting found for |- ( ( ( mulGrp ` R ) e. Smgrp /\ ( a e. ( Base ` R ) /\ b e. ( Base ` R ) /\ c e. ( Base ` R ) ) ) -> ( ( a ( .r ` R ) b ) ( .r ` R ) c ) = ( a ( .r ` R ) ( b ( .r ` R ) c ) ) ) with typecode |-
20 7 14 19 syl2an2r RRngUL0˙UaBaseIbBaseIcBaseIaRbRc=aRbRc
21 2 17 ressmulr ULR=I
22 21 eqcomd ULI=R
23 22 oveqd ULaIb=aRb
24 eqidd ULc=c
25 22 23 24 oveq123d ULaIbIc=aRbRc
26 eqidd ULa=a
27 22 oveqd ULbIc=bRc
28 22 26 27 oveq123d ULaIbIc=aRbRc
29 25 28 eqeq12d ULaIbIc=aIbIcaRbRc=aRbRc
30 29 3ad2ant2 RRngUL0˙UaIbIc=aIbIcaRbRc=aRbRc
31 30 adantr RRngUL0˙UaBaseIbBaseIcBaseIaIbIc=aIbIcaRbRc=aRbRc
32 20 31 mpbird RRngUL0˙UaBaseIbBaseIcBaseIaIbIc=aIbIc
33 32 ralrimivvva RRngUL0˙UaBaseIbBaseIcBaseIaIbIc=aIbIc
34 eqid mulGrpI=mulGrpI
35 eqid BaseI=BaseI
36 34 35 mgpbas BaseI=BasemulGrpI
37 eqid I=I
38 34 37 mgpplusg I=+mulGrpI
39 36 38 issgrp Could not format ( ( mulGrp ` I ) e. Smgrp <-> ( ( mulGrp ` I ) e. Mgm /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) ) : No typesetting found for |- ( ( mulGrp ` I ) e. Smgrp <-> ( ( mulGrp ` I ) e. Mgm /\ A. a e. ( Base ` I ) A. b e. ( Base ` I ) A. c e. ( Base ` I ) ( ( a ( .r ` I ) b ) ( .r ` I ) c ) = ( a ( .r ` I ) ( b ( .r ` I ) c ) ) ) ) with typecode |-
40 4 33 39 sylanbrc Could not format ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Smgrp ) : No typesetting found for |- ( ( R e. Rng /\ U e. L /\ .0. e. U ) -> ( mulGrp ` I ) e. Smgrp ) with typecode |-