Metamath Proof Explorer


Theorem rpnnen1lem2

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013)

Ref Expression
Hypotheses rpnnen1lem.1 T=n|nk<x
rpnnen1lem.2 F=xksupT<k
Assertion rpnnen1lem2 xksupT<

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T=n|nk<x
2 rpnnen1lem.2 F=xksupT<k
3 1 ssrab3 T
4 nnre kk
5 remulcl kxkx
6 5 ancoms xkkx
7 4 6 sylan2 xkkx
8 btwnz kxnn<kxnkx<n
9 8 simpld kxnn<kx
10 7 9 syl xknn<kx
11 zre nn
12 11 adantl xknn
13 simpll xknx
14 nngt0 k0<k
15 4 14 jca kk0<k
16 15 ad2antlr xknk0<k
17 ltdivmul nxk0<knk<xn<kx
18 12 13 16 17 syl3anc xknnk<xn<kx
19 18 rexbidva xknnk<xnn<kx
20 10 19 mpbird xknnk<x
21 rabn0 n|nk<xnnk<x
22 20 21 sylibr xkn|nk<x
23 1 neeq1i Tn|nk<x
24 22 23 sylibr xkT
25 1 reqabi nTnnk<x
26 4 ad2antlr xknk
27 26 13 5 syl2anc xknkx
28 ltle nkxn<kxnkx
29 12 27 28 syl2anc xknn<kxnkx
30 18 29 sylbid xknnk<xnkx
31 30 impr xknnk<xnkx
32 25 31 sylan2b xknTnkx
33 32 ralrimiva xknTnkx
34 brralrspcev kxnTnkxynTny
35 7 33 34 syl2anc xkynTny
36 suprzcl TTynTnysupT<T
37 3 24 35 36 mp3an2i xksupT<T
38 3 37 sselid xksupT<