Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpnnen1lem.1 | |
|
rpnnen1lem.2 | |
||
Assertion | rpnnen1lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen1lem.1 | |
|
2 | rpnnen1lem.2 | |
|
3 | 1 | ssrab3 | |
4 | nnre | |
|
5 | remulcl | |
|
6 | 5 | ancoms | |
7 | 4 6 | sylan2 | |
8 | btwnz | |
|
9 | 8 | simpld | |
10 | 7 9 | syl | |
11 | zre | |
|
12 | 11 | adantl | |
13 | simpll | |
|
14 | nngt0 | |
|
15 | 4 14 | jca | |
16 | 15 | ad2antlr | |
17 | ltdivmul | |
|
18 | 12 13 16 17 | syl3anc | |
19 | 18 | rexbidva | |
20 | 10 19 | mpbird | |
21 | rabn0 | |
|
22 | 20 21 | sylibr | |
23 | 1 | neeq1i | |
24 | 22 23 | sylibr | |
25 | 1 | reqabi | |
26 | 4 | ad2antlr | |
27 | 26 13 5 | syl2anc | |
28 | ltle | |
|
29 | 12 27 28 | syl2anc | |
30 | 18 29 | sylbid | |
31 | 30 | impr | |
32 | 25 31 | sylan2b | |
33 | 32 | ralrimiva | |
34 | brralrspcev | |
|
35 | 7 33 34 | syl2anc | |
36 | suprzcl | |
|
37 | 3 24 35 36 | mp3an2i | |
38 | 3 37 | sselid | |