Metamath Proof Explorer


Theorem rrhfe

Description: If R is an extension of RR , then the canonical homomorphism of RR into R is a function. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypothesis rrhfe.b B = Base R
Assertion rrhfe R ℝExt ℝHom R : B

Proof

Step Hyp Ref Expression
1 rrhfe.b B = Base R
2 eqid dist R B × B = dist R B × B
3 eqid topGen ran . = topGen ran .
4 eqid TopOpen R = TopOpen R
5 eqid ℤMod R = ℤMod R
6 rrextdrg R ℝExt R DivRing
7 rrextnrg R ℝExt R NrmRing
8 5 rrextnlm R ℝExt ℤMod R NrmMod
9 rrextchr R ℝExt chr R = 0
10 rrextcusp R ℝExt R CUnifSp
11 1 2 rrextust R ℝExt UnifSt R = metUnif dist R B × B
12 2 3 1 4 5 6 7 8 9 10 11 rrhf R ℝExt ℝHom R : B