| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrntotbnd.1 |  | 
						
							| 2 |  | rrntotbnd.2 |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 3 4 1 | repwsmet |  | 
						
							| 6 | 1 | rrnmet |  | 
						
							| 7 |  | hashcl |  | 
						
							| 8 |  | nn0re |  | 
						
							| 9 |  | nn0ge0 |  | 
						
							| 10 | 8 9 | resqrtcld |  | 
						
							| 11 | 7 10 | syl |  | 
						
							| 12 | 8 9 | sqrtge0d |  | 
						
							| 13 | 7 12 | syl |  | 
						
							| 14 | 11 13 | ge0p1rpd |  | 
						
							| 15 |  | 1rp |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 |  | metcl |  | 
						
							| 18 | 17 | 3expb |  | 
						
							| 19 | 6 18 | sylan |  | 
						
							| 20 | 11 | adantr |  | 
						
							| 21 | 5 | adantr |  | 
						
							| 22 |  | simprl |  | 
						
							| 23 |  | simprr |  | 
						
							| 24 |  | metcl |  | 
						
							| 25 |  | metge0 |  | 
						
							| 26 | 24 25 | jca |  | 
						
							| 27 | 21 22 23 26 | syl3anc |  | 
						
							| 28 | 27 | simpld |  | 
						
							| 29 | 20 28 | remulcld |  | 
						
							| 30 |  | peano2re |  | 
						
							| 31 | 11 30 | syl |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 32 28 | remulcld |  | 
						
							| 34 |  | id |  | 
						
							| 35 | 3 4 1 34 | rrnequiv |  | 
						
							| 36 | 35 | simprd |  | 
						
							| 37 | 20 | lep1d |  | 
						
							| 38 |  | lemul1a |  | 
						
							| 39 | 20 32 27 37 38 | syl31anc |  | 
						
							| 40 | 19 29 33 36 39 | letrd |  | 
						
							| 41 | 35 | simpld |  | 
						
							| 42 | 19 | recnd |  | 
						
							| 43 | 42 | mullidd |  | 
						
							| 44 | 41 43 | breqtrrd |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | ax-resscn |  | 
						
							| 47 | 3 45 | cnpwstotbnd |  | 
						
							| 48 | 46 47 | mpan |  | 
						
							| 49 | 5 6 14 16 40 44 45 2 48 | equivbnd2 |  |