Description: A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 16-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrntotbnd.1 | |
|
rrntotbnd.2 | |
||
Assertion | rrntotbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrntotbnd.1 | |
|
2 | rrntotbnd.2 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 1 | repwsmet | |
6 | 1 | rrnmet | |
7 | hashcl | |
|
8 | nn0re | |
|
9 | nn0ge0 | |
|
10 | 8 9 | resqrtcld | |
11 | 7 10 | syl | |
12 | 8 9 | sqrtge0d | |
13 | 7 12 | syl | |
14 | 11 13 | ge0p1rpd | |
15 | 1rp | |
|
16 | 15 | a1i | |
17 | metcl | |
|
18 | 17 | 3expb | |
19 | 6 18 | sylan | |
20 | 11 | adantr | |
21 | 5 | adantr | |
22 | simprl | |
|
23 | simprr | |
|
24 | metcl | |
|
25 | metge0 | |
|
26 | 24 25 | jca | |
27 | 21 22 23 26 | syl3anc | |
28 | 27 | simpld | |
29 | 20 28 | remulcld | |
30 | peano2re | |
|
31 | 11 30 | syl | |
32 | 31 | adantr | |
33 | 32 28 | remulcld | |
34 | id | |
|
35 | 3 4 1 34 | rrnequiv | |
36 | 35 | simprd | |
37 | 20 | lep1d | |
38 | lemul1a | |
|
39 | 20 32 27 37 38 | syl31anc | |
40 | 19 29 33 36 39 | letrd | |
41 | 35 | simpld | |
42 | 19 | recnd | |
43 | 42 | mullidd | |
44 | 41 43 | breqtrrd | |
45 | eqid | |
|
46 | ax-resscn | |
|
47 | 3 45 | cnpwstotbnd | |
48 | 46 47 | mpan | |
49 | 5 6 14 16 40 44 45 2 48 | equivbnd2 | |