Metamath Proof Explorer


Theorem rrntotbnd

Description: A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses rrntotbnd.1 X=I
rrntotbnd.2 M=nIY×Y
Assertion rrntotbnd IFinMTotBndYMBndY

Proof

Step Hyp Ref Expression
1 rrntotbnd.1 X=I
2 rrntotbnd.2 M=nIY×Y
3 eqid fld𝑠𝑠I=fld𝑠𝑠I
4 eqid distfld𝑠𝑠I=distfld𝑠𝑠I
5 3 4 1 repwsmet IFindistfld𝑠𝑠IMetX
6 1 rrnmet IFinnIMetX
7 hashcl IFinI0
8 nn0re I0I
9 nn0ge0 I00I
10 8 9 resqrtcld I0I
11 7 10 syl IFinI
12 8 9 sqrtge0d I00I
13 7 12 syl IFin0I
14 11 13 ge0p1rpd IFinI+1+
15 1rp 1+
16 15 a1i IFin1+
17 metcl nIMetXxXyXxnIy
18 17 3expb nIMetXxXyXxnIy
19 6 18 sylan IFinxXyXxnIy
20 11 adantr IFinxXyXI
21 5 adantr IFinxXyXdistfld𝑠𝑠IMetX
22 simprl IFinxXyXxX
23 simprr IFinxXyXyX
24 metcl distfld𝑠𝑠IMetXxXyXxdistfld𝑠𝑠Iy
25 metge0 distfld𝑠𝑠IMetXxXyX0xdistfld𝑠𝑠Iy
26 24 25 jca distfld𝑠𝑠IMetXxXyXxdistfld𝑠𝑠Iy0xdistfld𝑠𝑠Iy
27 21 22 23 26 syl3anc IFinxXyXxdistfld𝑠𝑠Iy0xdistfld𝑠𝑠Iy
28 27 simpld IFinxXyXxdistfld𝑠𝑠Iy
29 20 28 remulcld IFinxXyXIxdistfld𝑠𝑠Iy
30 peano2re II+1
31 11 30 syl IFinI+1
32 31 adantr IFinxXyXI+1
33 32 28 remulcld IFinxXyXI+1xdistfld𝑠𝑠Iy
34 id IFinIFin
35 3 4 1 34 rrnequiv IFinxXyXxdistfld𝑠𝑠IyxnIyxnIyIxdistfld𝑠𝑠Iy
36 35 simprd IFinxXyXxnIyIxdistfld𝑠𝑠Iy
37 20 lep1d IFinxXyXII+1
38 lemul1a II+1xdistfld𝑠𝑠Iy0xdistfld𝑠𝑠IyII+1Ixdistfld𝑠𝑠IyI+1xdistfld𝑠𝑠Iy
39 20 32 27 37 38 syl31anc IFinxXyXIxdistfld𝑠𝑠IyI+1xdistfld𝑠𝑠Iy
40 19 29 33 36 39 letrd IFinxXyXxnIyI+1xdistfld𝑠𝑠Iy
41 35 simpld IFinxXyXxdistfld𝑠𝑠IyxnIy
42 19 recnd IFinxXyXxnIy
43 42 mullidd IFinxXyX1xnIy=xnIy
44 41 43 breqtrrd IFinxXyXxdistfld𝑠𝑠Iy1xnIy
45 eqid distfld𝑠𝑠IY×Y=distfld𝑠𝑠IY×Y
46 ax-resscn
47 3 45 cnpwstotbnd IFindistfld𝑠𝑠IY×YTotBndYdistfld𝑠𝑠IY×YBndY
48 46 47 mpan IFindistfld𝑠𝑠IY×YTotBndYdistfld𝑠𝑠IY×YBndY
49 5 6 14 16 40 44 45 2 48 equivbnd2 IFinMTotBndYMBndY