Metamath Proof Explorer


Theorem rtrclexi

Description: The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020)

Ref Expression
Hypothesis rtrclexi.1 A V
Assertion rtrclexi x | A x x x x I dom x ran x x V

Proof

Step Hyp Ref Expression
1 rtrclexi.1 A V
2 ssun1 A A dom A ran A × dom A ran A
3 coundir A dom A ran A × dom A ran A A dom A ran A × dom A ran A = A A dom A ran A × dom A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
4 coundi A A dom A ran A × dom A ran A = A A A dom A ran A × dom A ran A
5 cossxp A A dom A × ran A
6 ssun1 dom A dom A ran A
7 ssun2 ran A dom A ran A
8 xpss12 dom A dom A ran A ran A dom A ran A dom A × ran A dom A ran A × dom A ran A
9 6 7 8 mp2an dom A × ran A dom A ran A × dom A ran A
10 5 9 sstri A A dom A ran A × dom A ran A
11 cossxp A dom A ran A × dom A ran A dom dom A ran A × dom A ran A × ran A
12 dmxpss dom dom A ran A × dom A ran A dom A ran A
13 xpss12 dom dom A ran A × dom A ran A dom A ran A ran A dom A ran A dom dom A ran A × dom A ran A × ran A dom A ran A × dom A ran A
14 12 7 13 mp2an dom dom A ran A × dom A ran A × ran A dom A ran A × dom A ran A
15 11 14 sstri A dom A ran A × dom A ran A dom A ran A × dom A ran A
16 10 15 unssi A A A dom A ran A × dom A ran A dom A ran A × dom A ran A
17 4 16 eqsstri A A dom A ran A × dom A ran A dom A ran A × dom A ran A
18 coundi dom A ran A × dom A ran A A dom A ran A × dom A ran A = dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
19 cossxp dom A ran A × dom A ran A A dom A × ran dom A ran A × dom A ran A
20 rnxpss ran dom A ran A × dom A ran A dom A ran A
21 xpss12 dom A dom A ran A ran dom A ran A × dom A ran A dom A ran A dom A × ran dom A ran A × dom A ran A dom A ran A × dom A ran A
22 6 20 21 mp2an dom A × ran dom A ran A × dom A ran A dom A ran A × dom A ran A
23 19 22 sstri dom A ran A × dom A ran A A dom A ran A × dom A ran A
24 xpidtr dom A ran A × dom A ran A dom A ran A × dom A ran A dom A ran A × dom A ran A
25 23 24 unssi dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A dom A ran A × dom A ran A
26 18 25 eqsstri dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
27 17 26 unssi A A dom A ran A × dom A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
28 3 27 eqsstri A dom A ran A × dom A ran A A dom A ran A × dom A ran A dom A ran A × dom A ran A
29 ssun2 dom A ran A × dom A ran A A dom A ran A × dom A ran A
30 28 29 sstri A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A
31 dmun dom A dom A ran A × dom A ran A = dom A dom dom A ran A × dom A ran A
32 6 12 unssi dom A dom dom A ran A × dom A ran A dom A ran A
33 31 32 eqsstri dom A dom A ran A × dom A ran A dom A ran A
34 rnun ran A dom A ran A × dom A ran A = ran A ran dom A ran A × dom A ran A
35 7 20 unssi ran A ran dom A ran A × dom A ran A dom A ran A
36 34 35 eqsstri ran A dom A ran A × dom A ran A dom A ran A
37 33 36 unssi dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A dom A ran A
38 ssres2 dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A I dom A ran A
39 37 38 ax-mp I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A I dom A ran A
40 idssxp I dom A ran A dom A ran A × dom A ran A
41 39 40 sstri I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A dom A ran A × dom A ran A
42 41 29 sstri I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
43 id A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
44 30 42 43 mp2an A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
45 1 elexi A V
46 45 dmex dom A V
47 45 rnex ran A V
48 46 47 unex dom A ran A V
49 48 48 xpex dom A ran A × dom A ran A V
50 45 49 unex A dom A ran A × dom A ran A V
51 id x = A dom A ran A × dom A ran A x = A dom A ran A × dom A ran A
52 51 51 coeq12d x = A dom A ran A × dom A ran A x x = A dom A ran A × dom A ran A A dom A ran A × dom A ran A
53 52 51 sseq12d x = A dom A ran A × dom A ran A x x x A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A
54 dmeq x = A dom A ran A × dom A ran A dom x = dom A dom A ran A × dom A ran A
55 rneq x = A dom A ran A × dom A ran A ran x = ran A dom A ran A × dom A ran A
56 54 55 uneq12d x = A dom A ran A × dom A ran A dom x ran x = dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A
57 56 reseq2d x = A dom A ran A × dom A ran A I dom x ran x = I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A
58 57 51 sseq12d x = A dom A ran A × dom A ran A I dom x ran x x I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
59 53 58 anbi12d x = A dom A ran A × dom A ran A x x x I dom x ran x x A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
60 59 cleq2lem x = A dom A ran A × dom A ran A A x x x x I dom x ran x x A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A
61 50 60 spcev A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A x A x x x x I dom x ran x x
62 intexab x A x x x x I dom x ran x x x | A x x x x I dom x ran x x V
63 61 62 sylib A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A A dom A ran A × dom A ran A I dom A dom A ran A × dom A ran A ran A dom A ran A × dom A ran A A dom A ran A × dom A ran A x | A x x x x I dom x ran x x V
64 2 44 63 mp2an x | A x x x x I dom x ran x x V