Metamath Proof Explorer


Theorem ruclem2

Description: Lemma for ruc . Ordering property for the input to D . (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φF:
ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
ruclem1.3 φA
ruclem1.4 φB
ruclem1.5 φM
ruclem1.6 X=1stABDM
ruclem1.7 Y=2ndABDM
ruclem2.8 φA<B
Assertion ruclem2 φAXX<YYB

Proof

Step Hyp Ref Expression
1 ruc.1 φF:
2 ruc.2 φD=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
3 ruclem1.3 φA
4 ruclem1.4 φB
5 ruclem1.5 φM
6 ruclem1.6 X=1stABDM
7 ruclem1.7 Y=2ndABDM
8 ruclem2.8 φA<B
9 3 leidd φAA
10 3 4 readdcld φA+B
11 10 rehalfcld φA+B2
12 11 4 readdcld φA+B2+B
13 12 rehalfcld φA+B2+B2
14 avglt1 ABA<BA<A+B2
15 3 4 14 syl2anc φA<BA<A+B2
16 8 15 mpbid φA<A+B2
17 avglt2 ABA<BA+B2<B
18 3 4 17 syl2anc φA<BA+B2<B
19 8 18 mpbid φA+B2<B
20 avglt1 A+B2BA+B2<BA+B2<A+B2+B2
21 11 4 20 syl2anc φA+B2<BA+B2<A+B2+B2
22 19 21 mpbid φA+B2<A+B2+B2
23 3 11 13 16 22 lttrd φA<A+B2+B2
24 3 13 23 ltled φAA+B2+B2
25 breq2 A=ifA+B2<MAA+B2+B2AAAifA+B2<MAA+B2+B2
26 breq2 A+B2+B2=ifA+B2<MAA+B2+B2AA+B2+B2AifA+B2<MAA+B2+B2
27 25 26 ifboth AAAA+B2+B2AifA+B2<MAA+B2+B2
28 9 24 27 syl2anc φAifA+B2<MAA+B2+B2
29 1 2 3 4 5 6 7 ruclem1 φABDM2X=ifA+B2<MAA+B2+B2Y=ifA+B2<MA+B2B
30 29 simp2d φX=ifA+B2<MAA+B2+B2
31 28 30 breqtrrd φAX
32 iftrue A+B2<MifA+B2<MAA+B2+B2=A
33 iftrue A+B2<MifA+B2<MA+B2B=A+B2
34 32 33 breq12d A+B2<MifA+B2<MAA+B2+B2<ifA+B2<MA+B2BA<A+B2
35 16 34 syl5ibrcom φA+B2<MifA+B2<MAA+B2+B2<ifA+B2<MA+B2B
36 avglt2 A+B2BA+B2<BA+B2+B2<B
37 11 4 36 syl2anc φA+B2<BA+B2+B2<B
38 19 37 mpbid φA+B2+B2<B
39 iffalse ¬A+B2<MifA+B2<MAA+B2+B2=A+B2+B2
40 iffalse ¬A+B2<MifA+B2<MA+B2B=B
41 39 40 breq12d ¬A+B2<MifA+B2<MAA+B2+B2<ifA+B2<MA+B2BA+B2+B2<B
42 38 41 syl5ibrcom φ¬A+B2<MifA+B2<MAA+B2+B2<ifA+B2<MA+B2B
43 35 42 pm2.61d φifA+B2<MAA+B2+B2<ifA+B2<MA+B2B
44 29 simp3d φY=ifA+B2<MA+B2B
45 43 30 44 3brtr4d φX<Y
46 11 4 19 ltled φA+B2B
47 4 leidd φBB
48 breq1 A+B2=ifA+B2<MA+B2BA+B2BifA+B2<MA+B2BB
49 breq1 B=ifA+B2<MA+B2BBBifA+B2<MA+B2BB
50 48 49 ifboth A+B2BBBifA+B2<MA+B2BB
51 46 47 50 syl2anc φifA+B2<MA+B2BB
52 44 51 eqbrtrd φYB
53 31 45 52 3jca φAXX<YYB