Metamath Proof Explorer


Theorem salpreimagtge

Description: If all the preimages of left-open, unbounded above intervals, belong to a sigma-algebra, then all the preimages of left-closed, unbounded above intervals, belong to the sigma-algebra. (iii) implies (iv) in Proposition 121B of Fremlin1 p. 35. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses salpreimagtge.x x φ
salpreimagtge.a a φ
salpreimagtge.s φ S SAlg
salpreimagtge.b φ x A B *
salpreimagtge.p φ a x A | a < B S
salpreimagtge.c φ C
Assertion salpreimagtge φ x A | C B S

Proof

Step Hyp Ref Expression
1 salpreimagtge.x x φ
2 salpreimagtge.a a φ
3 salpreimagtge.s φ S SAlg
4 salpreimagtge.b φ x A B *
5 salpreimagtge.p φ a x A | a < B S
6 salpreimagtge.c φ C
7 1 4 6 preimageiingt φ x A | C B = n x A | C 1 n < B
8 nnct ω
9 8 a1i φ ω
10 nnn0
11 10 a1i φ
12 6 adantr φ n C
13 nnrecre n 1 n
14 13 adantl φ n 1 n
15 12 14 resubcld φ n C 1 n
16 nfv a C 1 n
17 2 16 nfan a φ C 1 n
18 nfv a x A | C 1 n < B S
19 17 18 nfim a φ C 1 n x A | C 1 n < B S
20 ovex C 1 n V
21 eleq1 a = C 1 n a C 1 n
22 21 anbi2d a = C 1 n φ a φ C 1 n
23 breq1 a = C 1 n a < B C 1 n < B
24 23 rabbidv a = C 1 n x A | a < B = x A | C 1 n < B
25 24 eleq1d a = C 1 n x A | a < B S x A | C 1 n < B S
26 22 25 imbi12d a = C 1 n φ a x A | a < B S φ C 1 n x A | C 1 n < B S
27 19 20 26 5 vtoclf φ C 1 n x A | C 1 n < B S
28 15 27 syldan φ n x A | C 1 n < B S
29 3 9 11 28 saliincl φ n x A | C 1 n < B S
30 7 29 eqeltrd φ x A | C B S