Metamath Proof Explorer


Theorem scutbday

Description: The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion scutbday AsBbdayA|sB=bdayxNo|AsxxsB

Proof

Step Hyp Ref Expression
1 scutval AsBA|sB=ιyxNo|AsxxsB|bdayy=bdayxNo|AsxxsB
2 1 eqcomd AsBιyxNo|AsxxsB|bdayy=bdayxNo|AsxxsB=A|sB
3 scutcut AsBA|sBNoAsA|sBA|sBsB
4 sneq x=A|sBx=A|sB
5 4 breq2d x=A|sBAsxAsA|sB
6 4 breq1d x=A|sBxsBA|sBsB
7 5 6 anbi12d x=A|sBAsxxsBAsA|sBA|sBsB
8 7 elrab A|sBxNo|AsxxsBA|sBNoAsA|sBA|sBsB
9 3anass A|sBNoAsA|sBA|sBsBA|sBNoAsA|sBA|sBsB
10 8 9 bitr4i A|sBxNo|AsxxsBA|sBNoAsA|sBA|sBsB
11 3 10 sylibr AsBA|sBxNo|AsxxsB
12 conway AsB∃!yxNo|AsxxsBbdayy=bdayxNo|AsxxsB
13 fveqeq2 y=A|sBbdayy=bdayxNo|AsxxsBbdayA|sB=bdayxNo|AsxxsB
14 13 riota2 A|sBxNo|AsxxsB∃!yxNo|AsxxsBbdayy=bdayxNo|AsxxsBbdayA|sB=bdayxNo|AsxxsBιyxNo|AsxxsB|bdayy=bdayxNo|AsxxsB=A|sB
15 11 12 14 syl2anc AsBbdayA|sB=bdayxNo|AsxxsBιyxNo|AsxxsB|bdayy=bdayxNo|AsxxsB=A|sB
16 2 15 mpbird AsBbdayA|sB=bdayxNo|AsxxsB