Metamath Proof Explorer


Theorem seqcaopr2

Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014)

Ref Expression
Hypotheses seqcaopr2.1 φxSySx+˙yS
seqcaopr2.2 φxSySxQyS
seqcaopr2.3 φxSySzSwSxQz+˙yQw=x+˙yQz+˙w
seqcaopr2.4 φNM
seqcaopr2.5 φkMNFkS
seqcaopr2.6 φkMNGkS
seqcaopr2.7 φkMNHk=FkQGk
Assertion seqcaopr2 φseqM+˙HN=seqM+˙FNQseqM+˙GN

Proof

Step Hyp Ref Expression
1 seqcaopr2.1 φxSySx+˙yS
2 seqcaopr2.2 φxSySxQyS
3 seqcaopr2.3 φxSySzSwSxQz+˙yQw=x+˙yQz+˙w
4 seqcaopr2.4 φNM
5 seqcaopr2.5 φkMNFkS
6 seqcaopr2.6 φkMNGkS
7 seqcaopr2.7 φkMNHk=FkQGk
8 elfzouz nM..^NnM
9 8 adantl φnM..^NnM
10 elfzouz2 nM..^NNn
11 10 adantl φnM..^NNn
12 fzss2 NnMnMN
13 11 12 syl φnM..^NMnMN
14 13 sselda φnM..^NxMnxMN
15 6 ralrimiva φkMNGkS
16 15 adantr φnM..^NkMNGkS
17 fveq2 k=xGk=Gx
18 17 eleq1d k=xGkSGxS
19 18 rspccva kMNGkSxMNGxS
20 16 19 sylan φnM..^NxMNGxS
21 14 20 syldan φnM..^NxMnGxS
22 1 adantlr φnM..^NxSySx+˙yS
23 9 21 22 seqcl φnM..^NseqM+˙GnS
24 fzofzp1 nM..^Nn+1MN
25 fveq2 k=n+1Gk=Gn+1
26 25 eleq1d k=n+1GkSGn+1S
27 26 rspccva kMNGkSn+1MNGn+1S
28 15 24 27 syl2an φnM..^NGn+1S
29 5 ralrimiva φkMNFkS
30 fveq2 k=xFk=Fx
31 30 eleq1d k=xFkSFxS
32 31 rspccva kMNFkSxMNFxS
33 29 32 sylan φxMNFxS
34 33 adantlr φnM..^NxMNFxS
35 14 34 syldan φnM..^NxMnFxS
36 9 35 22 seqcl φnM..^NseqM+˙FnS
37 fveq2 k=n+1Fk=Fn+1
38 37 eleq1d k=n+1FkSFn+1S
39 38 rspccva kMNFkSn+1MNFn+1S
40 29 24 39 syl2an φnM..^NFn+1S
41 3 anassrs φxSySzSwSxQz+˙yQw=x+˙yQz+˙w
42 41 ralrimivva φxSySzSwSxQz+˙yQw=x+˙yQz+˙w
43 42 ralrimivva φxSySzSwSxQz+˙yQw=x+˙yQz+˙w
44 43 adantr φnM..^NxSySzSwSxQz+˙yQw=x+˙yQz+˙w
45 oveq1 x=seqM+˙FnxQz=seqM+˙FnQz
46 45 oveq1d x=seqM+˙FnxQz+˙yQw=seqM+˙FnQz+˙yQw
47 oveq1 x=seqM+˙Fnx+˙y=seqM+˙Fn+˙y
48 47 oveq1d x=seqM+˙Fnx+˙yQz+˙w=seqM+˙Fn+˙yQz+˙w
49 46 48 eqeq12d x=seqM+˙FnxQz+˙yQw=x+˙yQz+˙wseqM+˙FnQz+˙yQw=seqM+˙Fn+˙yQz+˙w
50 49 2ralbidv x=seqM+˙FnzSwSxQz+˙yQw=x+˙yQz+˙wzSwSseqM+˙FnQz+˙yQw=seqM+˙Fn+˙yQz+˙w
51 oveq1 y=Fn+1yQw=Fn+1Qw
52 51 oveq2d y=Fn+1seqM+˙FnQz+˙yQw=seqM+˙FnQz+˙Fn+1Qw
53 oveq2 y=Fn+1seqM+˙Fn+˙y=seqM+˙Fn+˙Fn+1
54 53 oveq1d y=Fn+1seqM+˙Fn+˙yQz+˙w=seqM+˙Fn+˙Fn+1Qz+˙w
55 52 54 eqeq12d y=Fn+1seqM+˙FnQz+˙yQw=seqM+˙Fn+˙yQz+˙wseqM+˙FnQz+˙Fn+1Qw=seqM+˙Fn+˙Fn+1Qz+˙w
56 55 2ralbidv y=Fn+1zSwSseqM+˙FnQz+˙yQw=seqM+˙Fn+˙yQz+˙wzSwSseqM+˙FnQz+˙Fn+1Qw=seqM+˙Fn+˙Fn+1Qz+˙w
57 50 56 rspc2va seqM+˙FnSFn+1SxSySzSwSxQz+˙yQw=x+˙yQz+˙wzSwSseqM+˙FnQz+˙Fn+1Qw=seqM+˙Fn+˙Fn+1Qz+˙w
58 36 40 44 57 syl21anc φnM..^NzSwSseqM+˙FnQz+˙Fn+1Qw=seqM+˙Fn+˙Fn+1Qz+˙w
59 oveq2 z=seqM+˙GnseqM+˙FnQz=seqM+˙FnQseqM+˙Gn
60 59 oveq1d z=seqM+˙GnseqM+˙FnQz+˙Fn+1Qw=seqM+˙FnQseqM+˙Gn+˙Fn+1Qw
61 oveq1 z=seqM+˙Gnz+˙w=seqM+˙Gn+˙w
62 61 oveq2d z=seqM+˙GnseqM+˙Fn+˙Fn+1Qz+˙w=seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙w
63 60 62 eqeq12d z=seqM+˙GnseqM+˙FnQz+˙Fn+1Qw=seqM+˙Fn+˙Fn+1Qz+˙wseqM+˙FnQseqM+˙Gn+˙Fn+1Qw=seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙w
64 oveq2 w=Gn+1Fn+1Qw=Fn+1QGn+1
65 64 oveq2d w=Gn+1seqM+˙FnQseqM+˙Gn+˙Fn+1Qw=seqM+˙FnQseqM+˙Gn+˙Fn+1QGn+1
66 oveq2 w=Gn+1seqM+˙Gn+˙w=seqM+˙Gn+˙Gn+1
67 66 oveq2d w=Gn+1seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙w=seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙Gn+1
68 65 67 eqeq12d w=Gn+1seqM+˙FnQseqM+˙Gn+˙Fn+1Qw=seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙wseqM+˙FnQseqM+˙Gn+˙Fn+1QGn+1=seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙Gn+1
69 63 68 rspc2va seqM+˙GnSGn+1SzSwSseqM+˙FnQz+˙Fn+1Qw=seqM+˙Fn+˙Fn+1Qz+˙wseqM+˙FnQseqM+˙Gn+˙Fn+1QGn+1=seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙Gn+1
70 23 28 58 69 syl21anc φnM..^NseqM+˙FnQseqM+˙Gn+˙Fn+1QGn+1=seqM+˙Fn+˙Fn+1QseqM+˙Gn+˙Gn+1
71 1 2 4 5 6 7 70 seqcaopr3 φseqM+˙HN=seqM+˙FNQseqM+˙GN