Description: Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0splitsn.ph | |
|
sge0splitsn.a | |
||
sge0splitsn.b | |
||
sge0splitsn.n | |
||
sge0splitsn.c | |
||
sge0splitsn.d | |
||
sge0splitsn.e | |
||
Assertion | sge0splitsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0splitsn.ph | |
|
2 | sge0splitsn.a | |
|
3 | sge0splitsn.b | |
|
4 | sge0splitsn.n | |
|
5 | sge0splitsn.c | |
|
6 | sge0splitsn.d | |
|
7 | sge0splitsn.e | |
|
8 | snfi | |
|
9 | 8 | a1i | |
10 | 9 | elexd | |
11 | disjsn | |
|
12 | 4 11 | sylibr | |
13 | elsni | |
|
14 | 6 | adantl | |
15 | 13 14 | sylan2 | |
16 | 7 | adantr | |
17 | 15 16 | eqeltrd | |
18 | 1 2 10 12 5 17 | sge0splitmpt | |
19 | 1 3 7 6 | sge0snmptf | |
20 | 19 | oveq2d | |
21 | 18 20 | eqtrd | |