Metamath Proof Explorer


Theorem sge0splitsn

Description: Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses sge0splitsn.ph kφ
sge0splitsn.a φAV
sge0splitsn.b φBW
sge0splitsn.n φ¬BA
sge0splitsn.c φkAC0+∞
sge0splitsn.d k=BC=D
sge0splitsn.e φD0+∞
Assertion sge0splitsn φsum^kABC=sum^kAC+𝑒D

Proof

Step Hyp Ref Expression
1 sge0splitsn.ph kφ
2 sge0splitsn.a φAV
3 sge0splitsn.b φBW
4 sge0splitsn.n φ¬BA
5 sge0splitsn.c φkAC0+∞
6 sge0splitsn.d k=BC=D
7 sge0splitsn.e φD0+∞
8 snfi BFin
9 8 a1i φBFin
10 9 elexd φBV
11 disjsn AB=¬BA
12 4 11 sylibr φAB=
13 elsni kBk=B
14 6 adantl φk=BC=D
15 13 14 sylan2 φkBC=D
16 7 adantr φkBD0+∞
17 15 16 eqeltrd φkBC0+∞
18 1 2 10 12 5 17 sge0splitmpt φsum^kABC=sum^kAC+𝑒sum^kBC
19 1 3 7 6 sge0snmptf φsum^kBC=D
20 19 oveq2d φsum^kAC+𝑒sum^kBC=sum^kAC+𝑒D
21 18 20 eqtrd φsum^kABC=sum^kAC+𝑒D