Metamath Proof Explorer


Theorem sgmmul

Description: The divisor function for fixed parameter A is a multiplicative function. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion sgmmul AMNMgcdN=1Aσ M N=AσMAσN

Proof

Step Hyp Ref Expression
1 simpr1 AMNMgcdN=1M
2 simpr2 AMNMgcdN=1N
3 simpr3 AMNMgcdN=1MgcdN=1
4 eqid x|xM=x|xM
5 eqid x|xN=x|xN
6 eqid x|x M N=x|x M N
7 ssrab2 x|xM
8 simpr AMNMgcdN=1jx|xMjx|xM
9 7 8 sselid AMNMgcdN=1jx|xMj
10 9 nncnd AMNMgcdN=1jx|xMj
11 simpll AMNMgcdN=1jx|xMA
12 10 11 cxpcld AMNMgcdN=1jx|xMjA
13 ssrab2 x|xN
14 simpr AMNMgcdN=1kx|xNkx|xN
15 13 14 sselid AMNMgcdN=1kx|xNk
16 15 nncnd AMNMgcdN=1kx|xNk
17 simpll AMNMgcdN=1kx|xNA
18 16 17 cxpcld AMNMgcdN=1kx|xNkA
19 9 adantrr AMNMgcdN=1jx|xMkx|xNj
20 19 nnred AMNMgcdN=1jx|xMkx|xNj
21 19 nnnn0d AMNMgcdN=1jx|xMkx|xNj0
22 21 nn0ge0d AMNMgcdN=1jx|xMkx|xN0j
23 15 adantrl AMNMgcdN=1jx|xMkx|xNk
24 23 nnred AMNMgcdN=1jx|xMkx|xNk
25 23 nnnn0d AMNMgcdN=1jx|xMkx|xNk0
26 25 nn0ge0d AMNMgcdN=1jx|xMkx|xN0k
27 simpll AMNMgcdN=1jx|xMkx|xNA
28 20 22 24 26 27 mulcxpd AMNMgcdN=1jx|xMkx|xNjkA=jAkA
29 28 eqcomd AMNMgcdN=1jx|xMkx|xNjAkA=jkA
30 oveq1 i=jkiA=jkA
31 1 2 3 4 5 6 12 18 29 30 fsumdvdsmul AMNMgcdN=1jx|xMjAkx|xNkA=ix|x M NiA
32 sgmval AMAσM=jx|xMjA
33 1 32 syldan AMNMgcdN=1AσM=jx|xMjA
34 sgmval ANAσN=kx|xNkA
35 2 34 syldan AMNMgcdN=1AσN=kx|xNkA
36 33 35 oveq12d AMNMgcdN=1AσMAσN=jx|xMjAkx|xNkA
37 1 2 nnmulcld AMNMgcdN=1 M N
38 sgmval A M NAσ M N=ix|x M NiA
39 37 38 syldan AMNMgcdN=1Aσ M N=ix|x M NiA
40 31 36 39 3eqtr4rd AMNMgcdN=1Aσ M N=AσMAσN