Metamath Proof Explorer


Theorem sgmnncl

Description: Closure of the divisor function. (Contributed by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmnncl A0BAσB

Proof

Step Hyp Ref Expression
1 nn0z A0A
2 sgmval2 ABAσB=kp|pBkA
3 1 2 sylan A0BAσB=kp|pBkA
4 fzfid A0B1BFin
5 dvdsssfz1 Bp|pB1B
6 5 adantl A0Bp|pB1B
7 4 6 ssfid A0Bp|pBFin
8 elrabi kp|pBk
9 simpl A0BA0
10 nnexpcl kA0kA
11 8 9 10 syl2anr A0Bkp|pBkA
12 11 nnzd A0Bkp|pBkA
13 7 12 fsumzcl A0Bkp|pBkA
14 nnz BB
15 iddvds BBB
16 14 15 syl BBB
17 breq1 p=BpBBB
18 17 rspcev BBBppB
19 16 18 mpdan BppB
20 rabn0 p|pBppB
21 19 20 sylibr Bp|pB
22 21 adantl A0Bp|pB
23 11 nnrpd A0Bkp|pBkA+
24 7 22 23 fsumrpcl A0Bkp|pBkA+
25 24 rpgt0d A0B0<kp|pBkA
26 elnnz kp|pBkAkp|pBkA0<kp|pBkA
27 13 25 26 sylanbrc A0Bkp|pBkA
28 3 27 eqeltrd A0BAσB