Metamath Proof Explorer


Theorem sgnmulsgn

Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Assertion sgnmulsgn ABAB<0sgnAsgnB<0

Proof

Step Hyp Ref Expression
1 neg1lt0 1<0
2 breq1 sgnAB=1sgnAB<01<0
3 1 2 mpbiri sgnAB=1sgnAB<0
4 3 adantl ABsgnAB=1sgnAB<0
5 simpr ABsgnAB<0sgnAB=1sgnAB=1
6 simpr ABsgnAB<0sgnAB=0sgnAB=0
7 simplr ABsgnAB<0sgnAB=0sgnAB<0
8 7 lt0ne0d ABsgnAB<0sgnAB=0sgnAB0
9 6 8 pm2.21ddne ABsgnAB<0sgnAB=0sgnAB=1
10 simpr ABsgnAB<0sgnAB=1sgnAB=1
11 simplr ABsgnAB<0sgnAB=1sgnAB<0
12 10 11 eqbrtrrd ABsgnAB<0sgnAB=11<0
13 1nn0 10
14 nn0nlt0 10¬1<0
15 13 14 mp1i ABsgnAB<0sgnAB=1¬1<0
16 12 15 pm2.21dd ABsgnAB<0sgnAB=1sgnAB=1
17 remulcl ABAB
18 17 rexrd ABAB*
19 18 adantr ABsgnAB<0AB*
20 sgncl AB*sgnAB101
21 eltpi sgnAB101sgnAB=1sgnAB=0sgnAB=1
22 19 20 21 3syl ABsgnAB<0sgnAB=1sgnAB=0sgnAB=1
23 5 9 16 22 mpjao3dan ABsgnAB<0sgnAB=1
24 4 23 impbida ABsgnAB=1sgnAB<0
25 sgnnbi AB*sgnAB=1AB<0
26 18 25 syl ABsgnAB=1AB<0
27 sgnmul ABsgnAB=sgnAsgnB
28 27 breq1d ABsgnAB<0sgnAsgnB<0
29 24 26 28 3bitr3d ABAB<0sgnAsgnB<0