Metamath Proof Explorer


Theorem sgnmulsgn

Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Assertion sgnmulsgn A B A B < 0 sgn A sgn B < 0

Proof

Step Hyp Ref Expression
1 neg1lt0 1 < 0
2 breq1 sgn A B = 1 sgn A B < 0 1 < 0
3 1 2 mpbiri sgn A B = 1 sgn A B < 0
4 3 adantl A B sgn A B = 1 sgn A B < 0
5 simpr A B sgn A B < 0 sgn A B = 1 sgn A B = 1
6 simpr A B sgn A B < 0 sgn A B = 0 sgn A B = 0
7 simplr A B sgn A B < 0 sgn A B = 0 sgn A B < 0
8 7 lt0ne0d A B sgn A B < 0 sgn A B = 0 sgn A B 0
9 6 8 pm2.21ddne A B sgn A B < 0 sgn A B = 0 sgn A B = 1
10 simpr A B sgn A B < 0 sgn A B = 1 sgn A B = 1
11 simplr A B sgn A B < 0 sgn A B = 1 sgn A B < 0
12 10 11 eqbrtrrd A B sgn A B < 0 sgn A B = 1 1 < 0
13 1nn0 1 0
14 nn0nlt0 1 0 ¬ 1 < 0
15 13 14 mp1i A B sgn A B < 0 sgn A B = 1 ¬ 1 < 0
16 12 15 pm2.21dd A B sgn A B < 0 sgn A B = 1 sgn A B = 1
17 remulcl A B A B
18 17 rexrd A B A B *
19 18 adantr A B sgn A B < 0 A B *
20 sgncl A B * sgn A B 1 0 1
21 eltpi sgn A B 1 0 1 sgn A B = 1 sgn A B = 0 sgn A B = 1
22 19 20 21 3syl A B sgn A B < 0 sgn A B = 1 sgn A B = 0 sgn A B = 1
23 5 9 16 22 mpjao3dan A B sgn A B < 0 sgn A B = 1
24 4 23 impbida A B sgn A B = 1 sgn A B < 0
25 sgnnbi A B * sgn A B = 1 A B < 0
26 18 25 syl A B sgn A B = 1 A B < 0
27 sgnmul A B sgn A B = sgn A sgn B
28 27 breq1d A B sgn A B < 0 sgn A sgn B < 0
29 24 26 28 3bitr3d A B A B < 0 sgn A sgn B < 0