Metamath Proof Explorer


Theorem sgnmulsgp

Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Assertion sgnmulsgp AB0<AB0<sgnAsgnB

Proof

Step Hyp Ref Expression
1 0lt1 0<1
2 breq2 sgnAB=10<sgnAB0<1
3 1 2 mpbiri sgnAB=10<sgnAB
4 3 adantl ABsgnAB=10<sgnAB
5 simplr AB0<sgnABsgnAB=10<sgnAB
6 simpr AB0<sgnABsgnAB=1sgnAB=1
7 5 6 breqtrd AB0<sgnABsgnAB=10<1
8 1nn0 10
9 nn0nlt0 10¬1<0
10 8 9 ax-mp ¬1<0
11 1re 1
12 lt0neg1 11<00<1
13 11 12 ax-mp 1<00<1
14 10 13 mtbi ¬0<1
15 14 a1i AB0<sgnABsgnAB=1¬0<1
16 7 15 pm2.21dd AB0<sgnABsgnAB=1sgnAB=1
17 simpr AB0<sgnABsgnAB=0sgnAB=0
18 simplr AB0<sgnABsgnAB=00<sgnAB
19 18 gt0ne0d AB0<sgnABsgnAB=0sgnAB0
20 17 19 pm2.21ddne AB0<sgnABsgnAB=0sgnAB=1
21 simpr AB0<sgnABsgnAB=1sgnAB=1
22 remulcl ABAB
23 22 rexrd ABAB*
24 23 adantr AB0<sgnABAB*
25 sgncl AB*sgnAB101
26 eltpi sgnAB101sgnAB=1sgnAB=0sgnAB=1
27 24 25 26 3syl AB0<sgnABsgnAB=1sgnAB=0sgnAB=1
28 16 20 21 27 mpjao3dan AB0<sgnABsgnAB=1
29 4 28 impbida ABsgnAB=10<sgnAB
30 sgnpbi AB*sgnAB=10<AB
31 23 30 syl ABsgnAB=10<AB
32 sgnmul ABsgnAB=sgnAsgnB
33 32 breq2d AB0<sgnAB0<sgnAsgnB
34 29 31 33 3bitr3d AB0<AB0<sgnAsgnB