Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|
2 |
1
|
rexrd |
|
3 |
|
eqeq2 |
|
4 |
|
eqeq2 |
|
5 |
|
eqeq2 |
|
6 |
|
simpr |
|
7 |
1
|
recnd |
|
8 |
7
|
adantr |
|
9 |
|
simplr |
|
10 |
9
|
recnd |
|
11 |
10
|
adantr |
|
12 |
|
simplr |
|
13 |
12
|
lt0ne0d |
|
14 |
8 11 13
|
mulne0bad |
|
15 |
6 14
|
pm2.21ddne |
|
16 |
|
simplll |
|
17 |
|
simpllr |
|
18 |
16 17
|
resubcld |
|
19 |
18
|
rexrd |
|
20 |
|
0red |
|
21 |
|
simpr |
|
22 |
1 9 21
|
mul2lt0lgt0 |
|
23 |
|
simpr |
|
24 |
17 20 16 22 23
|
lttrd |
|
25 |
|
simpr |
|
26 |
|
simpl |
|
27 |
25 26
|
posdifd |
|
28 |
27
|
biimpa |
|
29 |
16 17 24 28
|
syl21anc |
|
30 |
|
sgnp |
|
31 |
19 29 30
|
syl2anc |
|
32 |
|
simplll |
|
33 |
|
simpllr |
|
34 |
32 33
|
resubcld |
|
35 |
34
|
rexrd |
|
36 |
|
0red |
|
37 |
7
|
adantr |
|
38 |
37
|
subid1d |
|
39 |
|
simpr |
|
40 |
1 9 21
|
mul2lt0llt0 |
|
41 |
32 36 33 39 40
|
lttrd |
|
42 |
38 41
|
eqbrtrd |
|
43 |
32 36 33 42
|
ltsub23d |
|
44 |
|
sgnn |
|
45 |
35 43 44
|
syl2anc |
|
46 |
2 3 4 5 15 31 45
|
sgn3da |
|