Metamath Proof Explorer


Theorem shftfval

Description: The value of the sequence shifter operation is a function on CC . A is ordinarily an integer. (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Hypothesis shftfval.1 FV
Assertion shftfval AFshiftA=xy|xxAFy

Proof

Step Hyp Ref Expression
1 shftfval.1 FV
2 ovex xAV
3 vex yV
4 2 3 breldm xAFyxAdomF
5 npcan xAx-A+A=x
6 5 eqcomd xAx=x-A+A
7 6 ancoms Axx=x-A+A
8 oveq1 w=xAw+A=x-A+A
9 8 rspceeqv xAdomFx=x-A+AwdomFx=w+A
10 4 7 9 syl2anr AxxAFywdomFx=w+A
11 vex xV
12 eqeq1 z=xz=w+Ax=w+A
13 12 rexbidv z=xwdomFz=w+AwdomFx=w+A
14 11 13 elab xz|wdomFz=w+AwdomFx=w+A
15 10 14 sylibr AxxAFyxz|wdomFz=w+A
16 2 3 brelrn xAFyyranF
17 16 adantl AxxAFyyranF
18 15 17 jca AxxAFyxz|wdomFz=w+AyranF
19 18 expl AxxAFyxz|wdomFz=w+AyranF
20 19 ssopab2dv Axy|xxAFyxy|xz|wdomFz=w+AyranF
21 df-xp z|wdomFz=w+A×ranF=xy|xz|wdomFz=w+AyranF
22 20 21 sseqtrrdi Axy|xxAFyz|wdomFz=w+A×ranF
23 1 dmex domFV
24 23 abrexex z|wdomFz=w+AV
25 1 rnex ranFV
26 24 25 xpex z|wdomFz=w+A×ranFV
27 ssexg xy|xxAFyz|wdomFz=w+A×ranFz|wdomFz=w+A×ranFVxy|xxAFyV
28 22 26 27 sylancl Axy|xxAFyV
29 breq z=FxwzyxwFy
30 29 anbi2d z=FxxwzyxxwFy
31 30 opabbidv z=Fxy|xxwzy=xy|xxwFy
32 oveq2 w=Axw=xA
33 32 breq1d w=AxwFyxAFy
34 33 anbi2d w=AxxwFyxxAFy
35 34 opabbidv w=Axy|xxwFy=xy|xxAFy
36 df-shft shift=zV,wxy|xxwzy
37 31 35 36 ovmpog FVAxy|xxAFyVFshiftA=xy|xxAFy
38 1 37 mp3an1 Axy|xxAFyVFshiftA=xy|xxAFy
39 28 38 mpdan AFshiftA=xy|xxAFy