Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shuni.1 | |
|
shuni.2 | |
||
shuni.3 | |
||
shuni.4 | |
||
shuni.5 | |
||
shuni.6 | |
||
shuni.7 | |
||
shuni.8 | |
||
Assertion | shuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shuni.1 | |
|
2 | shuni.2 | |
|
3 | shuni.3 | |
|
4 | shuni.4 | |
|
5 | shuni.5 | |
|
6 | shuni.6 | |
|
7 | shuni.7 | |
|
8 | shuni.8 | |
|
9 | shsubcl | |
|
10 | 1 4 6 9 | syl3anc | |
11 | shel | |
|
12 | 1 4 11 | syl2anc | |
13 | shel | |
|
14 | 2 5 13 | syl2anc | |
15 | shel | |
|
16 | 1 6 15 | syl2anc | |
17 | shel | |
|
18 | 2 7 17 | syl2anc | |
19 | hvaddsub4 | |
|
20 | 12 14 16 18 19 | syl22anc | |
21 | 8 20 | mpbid | |
22 | shsubcl | |
|
23 | 2 7 5 22 | syl3anc | |
24 | 21 23 | eqeltrd | |
25 | 10 24 | elind | |
26 | 25 3 | eleqtrd | |
27 | elch0 | |
|
28 | 26 27 | sylib | |
29 | hvsubeq0 | |
|
30 | 12 16 29 | syl2anc | |
31 | 28 30 | mpbid | |
32 | 21 28 | eqtr3d | |
33 | hvsubeq0 | |
|
34 | 18 14 33 | syl2anc | |
35 | 32 34 | mpbid | |
36 | 35 | eqcomd | |
37 | 31 36 | jca | |