Metamath Proof Explorer


Theorem shuni

Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses shuni.1 φ H S
shuni.2 φ K S
shuni.3 φ H K = 0
shuni.4 φ A H
shuni.5 φ B K
shuni.6 φ C H
shuni.7 φ D K
shuni.8 φ A + B = C + D
Assertion shuni φ A = C B = D

Proof

Step Hyp Ref Expression
1 shuni.1 φ H S
2 shuni.2 φ K S
3 shuni.3 φ H K = 0
4 shuni.4 φ A H
5 shuni.5 φ B K
6 shuni.6 φ C H
7 shuni.7 φ D K
8 shuni.8 φ A + B = C + D
9 shsubcl H S A H C H A - C H
10 1 4 6 9 syl3anc φ A - C H
11 shel H S A H A
12 1 4 11 syl2anc φ A
13 shel K S B K B
14 2 5 13 syl2anc φ B
15 shel H S C H C
16 1 6 15 syl2anc φ C
17 shel K S D K D
18 2 7 17 syl2anc φ D
19 hvaddsub4 A B C D A + B = C + D A - C = D - B
20 12 14 16 18 19 syl22anc φ A + B = C + D A - C = D - B
21 8 20 mpbid φ A - C = D - B
22 shsubcl K S D K B K D - B K
23 2 7 5 22 syl3anc φ D - B K
24 21 23 eqeltrd φ A - C K
25 10 24 elind φ A - C H K
26 25 3 eleqtrd φ A - C 0
27 elch0 A - C 0 A - C = 0
28 26 27 sylib φ A - C = 0
29 hvsubeq0 A C A - C = 0 A = C
30 12 16 29 syl2anc φ A - C = 0 A = C
31 28 30 mpbid φ A = C
32 21 28 eqtr3d φ D - B = 0
33 hvsubeq0 D B D - B = 0 D = B
34 18 14 33 syl2anc φ D - B = 0 D = B
35 32 34 mpbid φ D = B
36 35 eqcomd φ B = D
37 31 36 jca φ A = C B = D