Metamath Proof Explorer


Theorem shuni

Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses shuni.1 φHS
shuni.2 φKS
shuni.3 φHK=0
shuni.4 φAH
shuni.5 φBK
shuni.6 φCH
shuni.7 φDK
shuni.8 φA+B=C+D
Assertion shuni φA=CB=D

Proof

Step Hyp Ref Expression
1 shuni.1 φHS
2 shuni.2 φKS
3 shuni.3 φHK=0
4 shuni.4 φAH
5 shuni.5 φBK
6 shuni.6 φCH
7 shuni.7 φDK
8 shuni.8 φA+B=C+D
9 shsubcl HSAHCHA-CH
10 1 4 6 9 syl3anc φA-CH
11 shel HSAHA
12 1 4 11 syl2anc φA
13 shel KSBKB
14 2 5 13 syl2anc φB
15 shel HSCHC
16 1 6 15 syl2anc φC
17 shel KSDKD
18 2 7 17 syl2anc φD
19 hvaddsub4 ABCDA+B=C+DA-C=D-B
20 12 14 16 18 19 syl22anc φA+B=C+DA-C=D-B
21 8 20 mpbid φA-C=D-B
22 shsubcl KSDKBKD-BK
23 2 7 5 22 syl3anc φD-BK
24 21 23 eqeltrd φA-CK
25 10 24 elind φA-CHK
26 25 3 eleqtrd φA-C0
27 elch0 A-C0A-C=0
28 26 27 sylib φA-C=0
29 hvsubeq0 ACA-C=0A=C
30 12 16 29 syl2anc φA-C=0A=C
31 28 30 mpbid φA=C
32 21 28 eqtr3d φD-B=0
33 hvsubeq0 DBD-B=0D=B
34 18 14 33 syl2anc φD-B=0D=B
35 32 34 mpbid φD=B
36 35 eqcomd φB=D
37 31 36 jca φA=CB=D