Metamath Proof Explorer


Theorem sigaldsys

Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
Assertion sigaldsys sigAlgebra O L

Proof

Step Hyp Ref Expression
1 isldsys.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
2 sigasspw t sigAlgebra O t 𝒫 O
3 velpw t 𝒫 𝒫 O t 𝒫 O
4 2 3 sylibr t sigAlgebra O t 𝒫 𝒫 O
5 elrnsiga t sigAlgebra O t ran sigAlgebra
6 0elsiga t ran sigAlgebra t
7 5 6 syl t sigAlgebra O t
8 5 adantr t sigAlgebra O x t t ran sigAlgebra
9 baselsiga t sigAlgebra O O t
10 9 adantr t sigAlgebra O x t O t
11 simpr t sigAlgebra O x t x t
12 difelsiga t ran sigAlgebra O t x t O x t
13 8 10 11 12 syl3anc t sigAlgebra O x t O x t
14 13 ralrimiva t sigAlgebra O x t O x t
15 5 ad2antrr t sigAlgebra O x 𝒫 t x ω Disj y x y t ran sigAlgebra
16 simplr t sigAlgebra O x 𝒫 t x ω Disj y x y x 𝒫 t
17 simprl t sigAlgebra O x 𝒫 t x ω Disj y x y x ω
18 sigaclcu t ran sigAlgebra x 𝒫 t x ω x t
19 15 16 17 18 syl3anc t sigAlgebra O x 𝒫 t x ω Disj y x y x t
20 19 ex t sigAlgebra O x 𝒫 t x ω Disj y x y x t
21 20 ralrimiva t sigAlgebra O x 𝒫 t x ω Disj y x y x t
22 7 14 21 3jca t sigAlgebra O t x t O x t x 𝒫 t x ω Disj y x y x t
23 4 22 jca t sigAlgebra O t 𝒫 𝒫 O t x t O x t x 𝒫 t x ω Disj y x y x t
24 1 isldsys t L t 𝒫 𝒫 O t x t O x t x 𝒫 t x ω Disj y x y x t
25 23 24 sylibr t sigAlgebra O t L
26 25 ssriv sigAlgebra O L