Metamath Proof Explorer


Theorem sigaldsys

Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis isldsys.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
Assertion sigaldsys sigAlgebraOL

Proof

Step Hyp Ref Expression
1 isldsys.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
2 sigasspw tsigAlgebraOt𝒫O
3 velpw t𝒫𝒫Ot𝒫O
4 2 3 sylibr tsigAlgebraOt𝒫𝒫O
5 elrnsiga tsigAlgebraOtransigAlgebra
6 0elsiga transigAlgebrat
7 5 6 syl tsigAlgebraOt
8 5 adantr tsigAlgebraOxttransigAlgebra
9 baselsiga tsigAlgebraOOt
10 9 adantr tsigAlgebraOxtOt
11 simpr tsigAlgebraOxtxt
12 difelsiga transigAlgebraOtxtOxt
13 8 10 11 12 syl3anc tsigAlgebraOxtOxt
14 13 ralrimiva tsigAlgebraOxtOxt
15 5 ad2antrr tsigAlgebraOx𝒫txωDisjyxytransigAlgebra
16 simplr tsigAlgebraOx𝒫txωDisjyxyx𝒫t
17 simprl tsigAlgebraOx𝒫txωDisjyxyxω
18 sigaclcu transigAlgebrax𝒫txωxt
19 15 16 17 18 syl3anc tsigAlgebraOx𝒫txωDisjyxyxt
20 19 ex tsigAlgebraOx𝒫txωDisjyxyxt
21 20 ralrimiva tsigAlgebraOx𝒫txωDisjyxyxt
22 7 14 21 3jca tsigAlgebraOtxtOxtx𝒫txωDisjyxyxt
23 4 22 jca tsigAlgebraOt𝒫𝒫OtxtOxtx𝒫txωDisjyxyxt
24 1 isldsys tLt𝒫𝒫OtxtOxtx𝒫txωDisjyxyxt
25 23 24 sylibr tsigAlgebraOtL
26 25 ssriv sigAlgebraOL