Metamath Proof Explorer


Theorem sin01gt0

Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Wolf Lammen, 25-Sep-2020)

Ref Expression
Assertion sin01gt0 A010<sinA

Proof

Step Hyp Ref Expression
1 0xr 0*
2 1re 1
3 elioc2 0*1A01A0<AA1
4 1 2 3 mp2an A01A0<AA1
5 4 simp1bi A01A
6 3nn0 30
7 reexpcl A30A3
8 5 6 7 sylancl A01A3
9 3re 3
10 3ne0 30
11 redivcl A3330A33
12 9 10 11 mp3an23 A3A33
13 8 12 syl A01A33
14 3z 3
15 expgt0 A30<A0<A3
16 14 15 mp3an2 A0<A0<A3
17 16 3adant3 A0<AA10<A3
18 4 17 sylbi A010<A3
19 0lt1 0<1
20 2 19 pm3.2i 10<1
21 3pos 0<3
22 9 21 pm3.2i 30<3
23 1lt3 1<3
24 ltdiv2 10<130<3A30<A31<3A33<A31
25 23 24 mpbii 10<130<3A30<A3A33<A31
26 20 22 25 mp3an12 A30<A3A33<A31
27 8 18 26 syl2anc A01A33<A31
28 8 recnd A01A3
29 28 div1d A01A31=A3
30 27 29 breqtrd A01A33<A3
31 1nn0 10
32 31 a1i A0110
33 1le3 13
34 1z 1
35 34 eluz1i 31313
36 14 33 35 mpbir2an 31
37 36 a1i A0131
38 4 simp2bi A010<A
39 0re 0
40 ltle 0A0<A0A
41 39 5 40 sylancr A010<A0A
42 38 41 mpd A010A
43 4 simp3bi A01A1
44 5 32 37 42 43 leexp2rd A01A3A1
45 5 recnd A01A
46 45 exp1d A01A1=A
47 44 46 breqtrd A01A3A
48 13 8 5 30 47 ltletrd A01A33<A
49 13 5 posdifd A01A33<A0<AA33
50 48 49 mpbid A010<AA33
51 sin01bnd A01AA33<sinAsinA<A
52 51 simpld A01AA33<sinA
53 5 13 resubcld A01AA33
54 5 resincld A01sinA
55 lttr 0AA33sinA0<AA33AA33<sinA0<sinA
56 39 53 54 55 mp3an2i A010<AA33AA33<sinA0<sinA
57 50 52 56 mp2and A010<sinA