| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|
| 2 |
|
1re |
|
| 3 |
|
elioc2 |
|
| 4 |
1 2 3
|
mp2an |
|
| 5 |
4
|
simp1bi |
|
| 6 |
|
3nn0 |
|
| 7 |
|
reexpcl |
|
| 8 |
5 6 7
|
sylancl |
|
| 9 |
|
3re |
|
| 10 |
|
3ne0 |
|
| 11 |
|
redivcl |
|
| 12 |
9 10 11
|
mp3an23 |
|
| 13 |
8 12
|
syl |
|
| 14 |
|
3z |
|
| 15 |
|
expgt0 |
|
| 16 |
14 15
|
mp3an2 |
|
| 17 |
16
|
3adant3 |
|
| 18 |
4 17
|
sylbi |
|
| 19 |
|
0lt1 |
|
| 20 |
2 19
|
pm3.2i |
|
| 21 |
|
3pos |
|
| 22 |
9 21
|
pm3.2i |
|
| 23 |
|
1lt3 |
|
| 24 |
|
ltdiv2 |
|
| 25 |
23 24
|
mpbii |
|
| 26 |
20 22 25
|
mp3an12 |
|
| 27 |
8 18 26
|
syl2anc |
|
| 28 |
8
|
recnd |
|
| 29 |
28
|
div1d |
|
| 30 |
27 29
|
breqtrd |
|
| 31 |
|
1nn0 |
|
| 32 |
31
|
a1i |
|
| 33 |
|
1le3 |
|
| 34 |
|
1z |
|
| 35 |
34
|
eluz1i |
|
| 36 |
14 33 35
|
mpbir2an |
|
| 37 |
36
|
a1i |
|
| 38 |
4
|
simp2bi |
|
| 39 |
|
0re |
|
| 40 |
|
ltle |
|
| 41 |
39 5 40
|
sylancr |
|
| 42 |
38 41
|
mpd |
|
| 43 |
4
|
simp3bi |
|
| 44 |
5 32 37 42 43
|
leexp2rd |
|
| 45 |
5
|
recnd |
|
| 46 |
45
|
exp1d |
|
| 47 |
44 46
|
breqtrd |
|
| 48 |
13 8 5 30 47
|
ltletrd |
|
| 49 |
13 5
|
posdifd |
|
| 50 |
48 49
|
mpbid |
|
| 51 |
|
sin01bnd |
|
| 52 |
51
|
simpld |
|
| 53 |
5 13
|
resubcld |
|
| 54 |
5
|
resincld |
|
| 55 |
|
lttr |
|
| 56 |
39 53 54 55
|
mp3an2i |
|
| 57 |
50 52 56
|
mp2and |
|