Metamath Proof Explorer


Theorem sinperlem

Description: Lemma for sinper and cosper . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)

Ref Expression
Hypotheses sinperlem.1 AFA=eiAOeiAD
sinperlem.2 A+K2πFA+K2π=eiA+K2πOeiA+K2πD
Assertion sinperlem AKFA+K2π=FA

Proof

Step Hyp Ref Expression
1 sinperlem.1 AFA=eiAOeiAD
2 sinperlem.2 A+K2πFA+K2π=eiA+K2πOeiA+K2πD
3 zcn KK
4 2cn 2
5 picn π
6 4 5 mulcli 2π
7 mulcl K2πK2π
8 3 6 7 sylancl KK2π
9 ax-icn i
10 adddi iAK2πiA+K2π=iA+iK2π
11 9 10 mp3an1 AK2πiA+K2π=iA+iK2π
12 8 11 sylan2 AKiA+K2π=iA+iK2π
13 mul12 iK2πiK2π=Ki2π
14 9 6 13 mp3an13 KiK2π=Ki2π
15 3 14 syl KiK2π=Ki2π
16 9 6 mulcli i2π
17 mulcom Ki2πKi2π=i2πK
18 3 16 17 sylancl KKi2π=i2πK
19 15 18 eqtrd KiK2π=i2πK
20 19 adantl AKiK2π=i2πK
21 20 oveq2d AKiA+iK2π=iA+i2πK
22 12 21 eqtrd AKiA+K2π=iA+i2πK
23 22 fveq2d AKeiA+K2π=eiA+i2πK
24 mulcl iAiA
25 9 24 mpan AiA
26 efper iAKeiA+i2πK=eiA
27 25 26 sylan AKeiA+i2πK=eiA
28 23 27 eqtrd AKeiA+K2π=eiA
29 negicn i
30 adddi iAK2πiA+K2π=iA+iK2π
31 29 30 mp3an1 AK2πiA+K2π=iA+iK2π
32 8 31 sylan2 AKiA+K2π=iA+iK2π
33 19 negeqd KiK2π=i2πK
34 mulneg1 iK2πiK2π=iK2π
35 9 8 34 sylancr KiK2π=iK2π
36 mulneg2 i2πKi2πK=i2πK
37 16 3 36 sylancr Ki2πK=i2πK
38 33 35 37 3eqtr4d KiK2π=i2πK
39 38 adantl AKiK2π=i2πK
40 39 oveq2d AKiA+iK2π=iA+i2πK
41 32 40 eqtrd AKiA+K2π=iA+i2πK
42 41 fveq2d AKeiA+K2π=eiA+i2πK
43 mulcl iAiA
44 29 43 mpan AiA
45 znegcl KK
46 efper iAKeiA+i2πK=eiA
47 44 45 46 syl2an AKeiA+i2πK=eiA
48 42 47 eqtrd AKeiA+K2π=eiA
49 28 48 oveq12d AKeiA+K2πOeiA+K2π=eiAOeiA
50 49 oveq1d AKeiA+K2πOeiA+K2πD=eiAOeiAD
51 addcl AK2πA+K2π
52 8 51 sylan2 AKA+K2π
53 52 2 syl AKFA+K2π=eiA+K2πOeiA+K2πD
54 1 adantr AKFA=eiAOeiAD
55 50 53 54 3eqtr4d AKFA+K2π=FA