Description: Lemma for sinper and cosper . (Contributed by Paul Chapman, 23-Jan-2008) (Revised by Mario Carneiro, 10-May-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sinperlem.1 | |
|
sinperlem.2 | |
||
Assertion | sinperlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sinperlem.1 | |
|
2 | sinperlem.2 | |
|
3 | zcn | |
|
4 | 2cn | |
|
5 | picn | |
|
6 | 4 5 | mulcli | |
7 | mulcl | |
|
8 | 3 6 7 | sylancl | |
9 | ax-icn | |
|
10 | adddi | |
|
11 | 9 10 | mp3an1 | |
12 | 8 11 | sylan2 | |
13 | mul12 | |
|
14 | 9 6 13 | mp3an13 | |
15 | 3 14 | syl | |
16 | 9 6 | mulcli | |
17 | mulcom | |
|
18 | 3 16 17 | sylancl | |
19 | 15 18 | eqtrd | |
20 | 19 | adantl | |
21 | 20 | oveq2d | |
22 | 12 21 | eqtrd | |
23 | 22 | fveq2d | |
24 | mulcl | |
|
25 | 9 24 | mpan | |
26 | efper | |
|
27 | 25 26 | sylan | |
28 | 23 27 | eqtrd | |
29 | negicn | |
|
30 | adddi | |
|
31 | 29 30 | mp3an1 | |
32 | 8 31 | sylan2 | |
33 | 19 | negeqd | |
34 | mulneg1 | |
|
35 | 9 8 34 | sylancr | |
36 | mulneg2 | |
|
37 | 16 3 36 | sylancr | |
38 | 33 35 37 | 3eqtr4d | |
39 | 38 | adantl | |
40 | 39 | oveq2d | |
41 | 32 40 | eqtrd | |
42 | 41 | fveq2d | |
43 | mulcl | |
|
44 | 29 43 | mpan | |
45 | znegcl | |
|
46 | efper | |
|
47 | 44 45 46 | syl2an | |
48 | 42 47 | eqtrd | |
49 | 28 48 | oveq12d | |
50 | 49 | oveq1d | |
51 | addcl | |
|
52 | 8 51 | sylan2 | |
53 | 52 2 | syl | |
54 | 1 | adantr | |
55 | 50 53 54 | 3eqtr4d | |