Metamath Proof Explorer


Theorem smfmbfcex

Description: A constant function, with non-lebesgue-measurable domain is a sigma-measurable functions (w.r.t. the Lebesgue measure on the Reals) but it is not a measurable functions ( w.r.t. to df-mbf ). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfmbfcex.s S=domvol
smfmbfcex.x φX
smfmbfcex.n φ¬XS
smfmbfcex.f F=xX0
Assertion smfmbfcex φFSMblFnS¬FMblFn

Proof

Step Hyp Ref Expression
1 smfmbfcex.s S=domvol
2 smfmbfcex.x φX
3 smfmbfcex.n φ¬XS
4 smfmbfcex.f F=xX0
5 nfv xφ
6 dmvolsal domvolSAlg
7 1 6 eqeltri SSAlg
8 7 a1i φSSAlg
9 1 unieqi S=domvol
10 unidmvol domvol=
11 9 10 eqtri S=
12 2 11 sseqtrrdi φXS
13 0red φ0
14 5 8 12 13 4 smfconst φFSMblFnS
15 0red φxX0
16 4 15 dmmptd φdomF=X
17 1 eqcomi domvol=S
18 17 a1i φdomvol=S
19 16 18 eleq12d φdomFdomvolXS
20 3 19 mtbird φ¬domFdomvol
21 mbfdm FMblFndomFdomvol
22 20 21 nsyl φ¬FMblFn
23 14 22 jca φFSMblFnS¬FMblFn