Metamath Proof Explorer


Theorem smfpimgtxrmptf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimgtxrmptf.x xφ
smfpimgtxrmptf.1 _xA
smfpimgtxrmptf.s φSSAlg
smfpimgtxrmptf.b φxABV
smfpimgtxrmptf.f φxABSMblFnS
smfpimgtxrmptf.l φL*
Assertion smfpimgtxrmptf φxA|L<BS𝑡A

Proof

Step Hyp Ref Expression
1 smfpimgtxrmptf.x xφ
2 smfpimgtxrmptf.1 _xA
3 smfpimgtxrmptf.s φSSAlg
4 smfpimgtxrmptf.b φxABV
5 smfpimgtxrmptf.f φxABSMblFnS
6 smfpimgtxrmptf.l φL*
7 nfmpt1 _xxAB
8 7 nfdm _xdomxAB
9 nfcv _ydomxAB
10 nfv yL<xABx
11 nfcv _xL
12 nfcv _x<
13 nfcv _xy
14 7 13 nffv _xxABy
15 11 12 14 nfbr xL<xABy
16 fveq2 x=yxABx=xABy
17 16 breq2d x=yL<xABxL<xABy
18 8 9 10 15 17 cbvrabw xdomxAB|L<xABx=ydomxAB|L<xABy
19 18 a1i φxdomxAB|L<xABx=ydomxAB|L<xABy
20 nfcv _yxAB
21 eqid domxAB=domxAB
22 20 3 5 21 6 smfpimgtxr φydomxAB|L<xAByS𝑡domxAB
23 19 22 eqeltrd φxdomxAB|L<xABxS𝑡domxAB
24 eqid xAB=xAB
25 1 2 24 4 dmmptdf2 φdomxAB=A
26 8 2 rabeqf domxAB=AxdomxAB|L<xABx=xA|L<xABx
27 25 26 syl φxdomxAB|L<xABx=xA|L<xABx
28 simpr φxAxA
29 2 fvmpt2f xABVxABx=B
30 28 4 29 syl2anc φxAxABx=B
31 30 breq2d φxAL<xABxL<B
32 1 31 rabbida φxA|L<xABx=xA|L<B
33 eqidd φxA|L<B=xA|L<B
34 27 32 33 3eqtrrd φxA|L<B=xdomxAB|L<xABx
35 25 eqcomd φA=domxAB
36 35 oveq2d φS𝑡A=S𝑡domxAB
37 34 36 eleq12d φxA|L<BS𝑡AxdomxAB|L<xABxS𝑡domxAB
38 23 37 mpbird φxA|L<BS𝑡A