Metamath Proof Explorer


Theorem smfpimltxrmptf

Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)

Ref Expression
Hypotheses smfpimltxrmptf.x xφ
smfpimltxrmptf.1 _xA
smfpimltxrmptf.s φSSAlg
smfpimltxrmptf.b φxABV
smfpimltxrmptf.f φxABSMblFnS
smfpimltxrmptf.r φR*
Assertion smfpimltxrmptf φxA|B<RS𝑡A

Proof

Step Hyp Ref Expression
1 smfpimltxrmptf.x xφ
2 smfpimltxrmptf.1 _xA
3 smfpimltxrmptf.s φSSAlg
4 smfpimltxrmptf.b φxABV
5 smfpimltxrmptf.f φxABSMblFnS
6 smfpimltxrmptf.r φR*
7 nfmpt1 _xxAB
8 7 nfdm _xdomxAB
9 nfcv _ydomxAB
10 nfv yxABx<R
11 nfcv _xy
12 7 11 nffv _xxABy
13 nfcv _x<
14 nfcv _xR
15 12 13 14 nfbr xxABy<R
16 fveq2 x=yxABx=xABy
17 16 breq1d x=yxABx<RxABy<R
18 8 9 10 15 17 cbvrabw xdomxAB|xABx<R=ydomxAB|xABy<R
19 18 a1i φxdomxAB|xABx<R=ydomxAB|xABy<R
20 nfcv _yxAB
21 eqid domxAB=domxAB
22 20 3 5 21 6 smfpimltxr φydomxAB|xABy<RS𝑡domxAB
23 19 22 eqeltrd φxdomxAB|xABx<RS𝑡domxAB
24 eqid xAB=xAB
25 1 2 24 4 dmmptdf2 φdomxAB=A
26 8 2 rabeqf domxAB=AxdomxAB|xABx<R=xA|xABx<R
27 25 26 syl φxdomxAB|xABx<R=xA|xABx<R
28 simpr φxAxA
29 2 fvmpt2f xABVxABx=B
30 28 4 29 syl2anc φxAxABx=B
31 30 breq1d φxAxABx<RB<R
32 1 31 rabbida φxA|xABx<R=xA|B<R
33 eqidd φxA|B<R=xA|B<R
34 27 32 33 3eqtrrd φxA|B<R=xdomxAB|xABx<R
35 25 eqcomd φA=domxAB
36 35 oveq2d φS𝑡A=S𝑡domxAB
37 34 36 eleq12d φxA|B<RS𝑡AxdomxAB|xABx<RS𝑡domxAB
38 23 37 mpbird φxA|B<RS𝑡A