Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 20-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smfpimltxrmptf.x | |
|
smfpimltxrmptf.1 | |
||
smfpimltxrmptf.s | |
||
smfpimltxrmptf.b | |
||
smfpimltxrmptf.f | |
||
smfpimltxrmptf.r | |
||
Assertion | smfpimltxrmptf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimltxrmptf.x | |
|
2 | smfpimltxrmptf.1 | |
|
3 | smfpimltxrmptf.s | |
|
4 | smfpimltxrmptf.b | |
|
5 | smfpimltxrmptf.f | |
|
6 | smfpimltxrmptf.r | |
|
7 | nfmpt1 | |
|
8 | 7 | nfdm | |
9 | nfcv | |
|
10 | nfv | |
|
11 | nfcv | |
|
12 | 7 11 | nffv | |
13 | nfcv | |
|
14 | nfcv | |
|
15 | 12 13 14 | nfbr | |
16 | fveq2 | |
|
17 | 16 | breq1d | |
18 | 8 9 10 15 17 | cbvrabw | |
19 | 18 | a1i | |
20 | nfcv | |
|
21 | eqid | |
|
22 | 20 3 5 21 6 | smfpimltxr | |
23 | 19 22 | eqeltrd | |
24 | eqid | |
|
25 | 1 2 24 4 | dmmptdf2 | |
26 | 8 2 | rabeqf | |
27 | 25 26 | syl | |
28 | simpr | |
|
29 | 2 | fvmpt2f | |
30 | 28 4 29 | syl2anc | |
31 | 30 | breq1d | |
32 | 1 31 | rabbida | |
33 | eqidd | |
|
34 | 27 32 33 | 3eqtrrd | |
35 | 25 | eqcomd | |
36 | 35 | oveq2d | |
37 | 34 36 | eleq12d | |
38 | 23 37 | mpbird | |