Metamath Proof Explorer


Theorem smndex1igid

Description: The composition of the modulo function I and a constant function ( GK ) results in ( GK ) itself. (Contributed by AV, 14-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I=x0xmodN
smndex1ibas.g G=n0..^Nx0n
Assertion smndex1igid K0..^NIGK=GK

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I=x0xmodN
4 smndex1ibas.g G=n0..^Nx0n
5 fconstmpt 0×K=x0K
6 5 eqcomi x0K=0×K
7 6 a1i K0..^Nx0K=0×K
8 7 coeq2d K0..^NIx0K=I0×K
9 simpl n=Kx0n=K
10 9 mpteq2dva n=Kx0n=x0K
11 nn0ex 0V
12 11 mptex x0KV
13 10 4 12 fvmpt K0..^NGK=x0K
14 13 coeq2d K0..^NIGK=Ix0K
15 oveq1 x=KxmodN=KmodN
16 zmodidfzoimp K0..^NKmodN=K
17 15 16 sylan9eqr K0..^Nx=KxmodN=K
18 elfzonn0 K0..^NK0
19 3 17 18 18 fvmptd2 K0..^NIK=K
20 19 eqcomd K0..^NK=IK
21 20 sneqd K0..^NK=IK
22 21 xpeq2d K0..^N0×K=0×IK
23 13 6 eqtrdi K0..^NGK=0×K
24 ovex xmodNV
25 24 3 fnmpti IFn0
26 fcoconst IFn0K0I0×K=0×IK
27 25 18 26 sylancr K0..^NI0×K=0×IK
28 22 23 27 3eqtr4d K0..^NGK=I0×K
29 8 14 28 3eqtr4d K0..^NIGK=GK