Description: Lemma for smu01 and smu02 . (Contributed by Mario Carneiro, 19-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | smu01lem.1 | |
|
smu01lem.2 | |
||
smu01lem.3 | |
||
Assertion | smu01lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smu01lem.1 | |
|
2 | smu01lem.2 | |
|
3 | smu01lem.3 | |
|
4 | smucl | |
|
5 | 1 2 4 | syl2anc | |
6 | 5 | sseld | |
7 | noel | |
|
8 | peano2nn0 | |
|
9 | fveqeq2 | |
|
10 | 9 | imbi2d | |
11 | fveqeq2 | |
|
12 | 11 | imbi2d | |
13 | fveqeq2 | |
|
14 | 13 | imbi2d | |
15 | eqid | |
|
16 | 1 2 15 | smup0 | |
17 | oveq1 | |
|
18 | 1 | adantr | |
19 | 2 | adantr | |
20 | simpr | |
|
21 | 18 19 15 20 | smupp1 | |
22 | 3 | anassrs | |
23 | 22 | ralrimiva | |
24 | rabeq0 | |
|
25 | 23 24 | sylibr | |
26 | 25 | oveq2d | |
27 | 0ss | |
|
28 | sadid1 | |
|
29 | 27 28 | mp1i | |
30 | 26 29 | eqtr2d | |
31 | 21 30 | eqeq12d | |
32 | 17 31 | imbitrrid | |
33 | 32 | expcom | |
34 | 33 | a2d | |
35 | 10 12 14 14 16 34 | nn0ind | |
36 | 8 35 | syl | |
37 | 36 | impcom | |
38 | 37 | eleq2d | |
39 | 7 38 | mtbiri | |
40 | 18 19 15 20 | smuval | |
41 | 39 40 | mtbird | |
42 | 41 | ex | |
43 | 6 42 | syld | |
44 | 43 | pm2.01d | |
45 | 44 | eq0rdv | |